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A Extensions to the Economic Model
This section examines three extensions of the economic model in Section 2.

Subsection A.1 shows that the results do not critically hinge on the functional form of
G(n, θ, r). Subsection A.2 shows that it is possible to allow stochastic fluctuations
in the excited-speculator population dynamics. Subsection A.3 shows that the main
conclusions are unchanged if you allow for continuous feedback between the excited-
speculator population and prices rather than letting the excited-speculator population
reach steady state each trading period.

A.1 Logistic Approximation
The law of motion for excited-speculator population dynamics in Section 2 is:

G(n, θ, r) = θ · r · (1 − n) × n − n (A1)

Θ(n, θ, r) = θ·r·(1−n)×n is the rate at which currently apathetic speculators get excited
about an asset, and Ω(n) = n is the rate at which currently excited speculators lose
interest. This law of motion captures the essential behavior around at the bifurcation
point of a broad range of functional forms which represent feedback trading.

Feedback trading occurs when an initial positive shock generates excess media
coverage and word-of-mouth buzz, which attracts new speculators to the market, which
generates even more media coverage and word-of-mouth buzz, which excites still
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more speculators, which generates still more media coverage and word-of-mouth buzz,
and so on. . . This narrative incorporates four key elements:

1. First, there must be some notion of a typical size for the excited-speculator
population. Without loss of generality, let us normalize this size to n = 0.

2. Second, the excited-speculator population dynamics should reflect the fact that
their population grows due to social interactions. Traders go “mad in herds.
(Mackay, 1841)” “There is a strong interpersonal component to investing, as
hypothesized in epidemic models. (Shiller and Pound, 1989)”

Thus, since it is harder to excite additional speculators when there are fewer
apathetic agents left to interact with, the crowd of excited speculators should
grow most rapidly when it is small and then grow more and more slowly as it
gets larger and larger. In short, the arrival rate should be convex in the current
population size: ∂n∂n[Θ(n, θ, r)] < 0.

3. Third, the probability that each excited speculator loses interest and departs the
crowd should be independent of this current population size. That same Mackay
(1841) epigram says that traders “recover their senses slowly and one by one”.
In other words, the per capital departure rate, Ω(n)/n = ω, should be constant.

Without loss of generality, I assume that ω = 1. If nτ(ω) and θ(ω) represent
the true values that depend on ω, then this renormalization is equivalent to
re-defining nτ

def
= nτ(ω)/ω and θ def

= θ(ω)/ω.
4. Finally, Shiller (2000) describes how “whenever the market reaches a new high,

public speakers, writers, and other prominent people suddenly appear, armed
with explanations for the apparent optimism seen in the market”. He points out
that “the new era thinking they promote is part of the process by which a boom
may be sustained and amplified—part of the feedback mechanism that. . . can
create speculative bubbles”.

Thus, the first speculators who get excited and enter the market should find
it easier to attract additional friends to join them when past returns are higher:
∂n∂r[Θ(n, θ, r)]n=0 > 0. But, to make sure we are not assuming the result, these
price changes should not have any higher-order effects: ∂r∂r[Θ(n, θ, r)] = 0.

The definition below converts these four elements into properties of the growth,
arrival, and departure rates for the excited-speculator population.
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Definition A.1 (Feedback Trading). The population dynamics of excited speculators

are governed by feedback trading if the following four conditions are satisfied:

1. For all r > 0, we have that G(0, θ, r) = 0.

2. For all n ∈ (0, 1) and r > 0, we have that ∂n∂n[Θ(n, θ, r)] < 0.

3. Ω(n) = n.

4. For all r > 0, we have that ∂n∂r[Θ(n, θ, r)]n=0 > 0 and ∂r∂r[Θ(n, θ, r)] = 0.

An excited-speculator population governed by Θ(n, θ, r) = θ · r · (1 − n) × n as in
Equation (A1) clearly displays feedback trading. But, so does a population governed
by Θ̃(n, θ, r) = r · (1 − e−θ·n). These functional forms look superficially different, but
both satisfy the feedback-trading criteria and therefore behave identically around r?.

Proposition A.1 (Bubble-Generating Mechanism as a Logistic Approximation). Sup-

pose that a population of excited speculators obeys the law of motion G̃(n, θ, r).
If there exists some r− > 0 such that ∂n[G̃(n, θ, r−)]n=0 < 0 and excited speculators

engage in feedback trading (Definition A.1), the population will display a sudden

qualitative change in steady-state behavior at a critical return threshold, r? > r−.

Here is the intuition. First, if the population of excited speculators engages in
feedback trading, then we know that the initial arrival rate is increasing in the price
level, ∂n∂r[Θ(n, θ, r)]n=0 > 0, for all r > 0. Higher returns make it easier for the first
excited speculator to recruit more of his friends. We also know that there exists a
return level, r− > 0, such that the initial per capita growth rate of the crowd of excited
speculators is negative, ∂n[G(n, θ, r−)]n=0 < 0. So, via the implicit-value theorem, we
know there must exist a critical return threshold, r? > r−, such that

∂n[G(n, θ, r)]n=0

< 0 if r < r?

> 0 if r > r?

Put differently, if we Taylor expand a law of motion that leads to feedback trading
around the point, (0, θ, r?), then the criteria for feedback trading imply that, to a
second-order approximation, this growth rate must behave just like the logistic growth
model for n ≈ 0. The restrictions in Definition A.1 imply that there exist positive
constants, ψ,ω > 0, such that when n ∈ [0, ε) and r ∈ (r? − δ, r? + δ) for sufficiently
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small values of ε, δ > 0:

G(n, θ, r) = ψ · (r − r?) × n − ω × n2 + O[n3]

n = 0 is a solution for all r > 0 since G(0, θ, r) = 0. What’s more, given the derivative
at zero, ψ · (r − r?), we can see n = 0 will only be a stable steady state when r < r?.
As soon as r > r?, this solution will switch from stable to unstable as in Figure 1. If
ψ = ω = θ and r? = 1/θ, the growth rate in the equation above is identical to the
logistic growth model. So this model is emblematic of a more general phenomenon.

Proof (Proposition A.1). The definition of feedback trading implies the following
sign restrictions for the derivatives of G(n, θ, r):

1. n = 0 is a steady-state solution for all r > 0 implies that ∂r[G(n, θ, r)]n=0 = 0.
2. ∂n∂n[Θ(n, θ, r)] < 0 and Ω(n) = n imply that ∂n∂n[G(n, θ, r)] < 0.
3. ∂n∂r[Θ(n, θ, r)]n=0 > 0 and Ω(n) = n imply that ∂n∂r[G(n, θ, r)]n=0 > 0.
4. ∂r∂r[Θ(n, θ, r)] = 0 and Ω(n) = n imply that ∂r∂r[G(n, θ, r)] = 0.
If i) there exists some r− > 0 such that ∂n[G(n, θ, r−)]n=0 < 0 and ii) for all r > 0

we have that both ∂n∂r[G(n, θ, r)]n=0 > 0 and ∂r∂r[G(n, θ, r)]n=0 = 0, then via the
implicit-value theorem there must be some critical return level, r? > r−, such that

∂r[G(n, θ, r)]n=0

< 0 if r < r?

> 0 if r > r?

Now, consider a Taylor expansion of G(n, θ, r) around the point (0, θ, r?) where
n ∈ [0, ε), θ is constant, and r ∈ (r? − δ, r? + δ) for sufficiently small ε, δ > 0:

G(n, θ, r) ≈ G(0, θ, r?)︸      ︷︷      ︸
=0

+ ∂n[G(0, θ, r?)]︸           ︷︷           ︸
=0

× n + ∂r[G(0, θ, r?)]︸           ︷︷           ︸
=0

× (r − r?)

+ 1
2 · ∂n∂n[G(0, θ, r?)]︸              ︷︷              ︸

<0

× n2

+ ∂n∂r[G(0, θ, r?)]︸              ︷︷              ︸
>0

× n · (r − r?)

+ 1
2 · ∂r∂r[G(0, θ, r?)]︸              ︷︷              ︸

=0

× (r − r?)2
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So for any steady-state solution, we must have G(n, θ, r) ≈ 0 = 1
2 · ∂n∂n[G(0, θ, r?)] ×

n2 + ∂n∂r[G(0, θ, r?)] × n · (r − r?). For a non-zero excited-speculator population,
n > 0, this is only possible if (r − r?) > 0. Thus, we must have that:

n = − 2 · ∂n∂r[G(0, θ, r?)]
∂n∂n[G(0, θ, r?)] · (r − r?) > 0 (A1′)

This positive solution will only be stable if

0 > ∂nG(n, θ, r) = ∂n∂n[G(0, θ, r?)] × n + ∂n∂r[G(0, θ, r?)] × (r − r?)

Plugging in the functional form for n from Equation (A1′) yields:

∂n∂n[G(0, θ, r?)] × n + ∂r∂n[G(0, θ, r?)] × (r − r?) = −∂r∂n[G(0, θ, r?)] × (r − r?)

From the condition above, we can conclude that the solution described by Equation
(A1′) will always be stable for r > r? since ∂r∂n[G(0, θ, r?)] > 0.

Thus, the logistic growth model captures the sudden qualitative change in steady-
state solutions displayed by any population dynamics exhibiting feedback trading. �

A.2 Random Fluctuations
This subsection shows that the sudden change in the steady-state behavior at

r? = 1/θ does not disappear when noise is added to the system. To do this, consider
redefining the law of motion in Equation (A1) as follows:

G̃(n, θ, r) def
= G(n, θ, r) + σ × n · dε

dτ

σ > 0 is a positive constant reflecting the instantaneous volatility of the excited-
speculator population growth rate, and ε IID∼ Normal(0, 1) is a white-noise process.

This noise implies the excited-speculator population will adhere to the following
stochastic law of motion for all nτ ∈ [0,∞):

dnτ = θ · (r − 1/θ) × nτ · dτ − θ · r × n2
τ · dτ + σ × nτ · dετ (A2)

I put time subscripts on nτ and dετ to highlight that these elements are now stochastic.
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Figure A1. Stationary Distribution. The mean, mode, and skewness of the excited-
speculator population (y-axis) as a function of past returns (r; x-axis) when there are
random fluctuations in population size as detailed in Proposition A.2.

Equation (A2) is just a noisy version of the law of motion described in Equation
(A1) with one important difference: the range is now nτ ∈ [0,∞) rather than nτ ∈ [0, 1).
Because the diffusion term σ × nτ · dετ contains nτ, the noise dies away as the excited-
speculator population shrinks towards zero. As a result, the population will never go
negative. But it is possible for the population to exceed unity, nτ > 1.1

The stationary distribution for the excited-speculator population in the stochastic
case displays a sudden change as the asset’s past return crosses a critical return
threshold, r? = 1/θ. When r < r?, any initial population of excited speculators almost
surely goes extinct; whereas, when r > r?, this is no longer the case. Adding noise
does not eliminate the sudden qualitative change as shown in Figure A1.

Proposition A.2 (Bubble-Generating Mechanism with Random Fluctuations). Suppose

the excited-speculator population is governed by Equation (A2) with σ =
√

2.

1. If r > r? = 1/θ, then given any initial n0 ∈ (0,∞) the stationary distribution is

lim
τ→∞

nτ = n∞(θ, r) ∼ Gamma
(
θ · r − 1, θ · r)

where Gamma(a, b) def
= ba

Γ(a) · xa−1

eb·x is the pdf for the Gamma distribution.

2. If r < r? = 1/θ, then n∞(θ, r) = 0 almost surely.
1One way to microfound nτ > 1 is to think about the quantity U as the typical rather than the total
number of apathetic speculators in the market rather than the total number. So, whenever nτ > 1, there
are more excited speculators in the market than usual (Safuan, Jovanoski, Towers, and Sidhu, 2013).
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Proof (Proposition A.2). Let nτ ∈ (0,∞) denote a stochastic process

dnτ = m(nτ) · dτ + σ · s(nτ) · dετ

where τ ≥ 0, m(n) denotes the drift term, σ > 0 is a positive constant, s(n) > 0 is the
diffusion term, and dετ is a standard Brownian-motion process. Assume that s(0) = 0
and that m(∞) = −∞. Finally, let pdfτ(n0) denote the probability-density function for
this stochastic process at time τ ≥ 0 given the initial value n0.

The Stratonovich interpretation of the Fokker-Plank equation dictates that:

∂τpdfτ(n0) = − ∂n

[ (
m(n)+ 1

2 ·σ2 · ds
dn · s(n)

)
·pdfτ(n0)

]
+ 1

2 ·σ2 ·∂n∂n

[
s(n)2 ·pdfτ(n0)

]
A stationary distribution has the property that ∂τpdfτ(n0) = 0 for all n0 ∈ [0,∞). Thus,
the stationary distribution must satisfy the following condition:

∂n

[ (
m(n) + 1

2 · σ2 · ds
dn · s(n)

)
· pdfτ(n0)

]
= 1

2 · σ2 · ∂n∂n

[
s(n)2 · pdfτ(n0)

]
This restriction, together with the boundary conditions that m(∞) = −∞ and s(0) = 0,
gives us the following functional form for the stationary distribution:

pdfτ(n) = 1
Ψ·s(n) · exp

(
1

σ2/2 ·
∫ n

0
m(n′)
s(n′)2 · dn′

)
Ψ

def
=

∫ ∞
0

1
s(n) · exp

(
1

σ2/2 ·
∫ n

0
m(n′)
s(n′)2 · dn′

)
· dn < ∞ is a renormalization factor ensuring

that the pdf is well-defined—i.e., that all probabilities sum to one,
∫ ∞

0
pdfτ(n) · dn = 1.

If we substitute in the functional form for the excited-speculator dynamics (Equa-
tion A2), we get m(n) = θ · (r−1/θ)×n−θ ·r×n2 and s(n) = n. So, when r > r? = 1/θ,
the solution dictates the density of the excited-speculator population:

pdf∞(n) =
(θ·r)θ·r−2

Γ(θ·r−1) · nθ·r−2

eθ·r·n

This is the functional form of the Gamma distribution, Gamma(a, b) def
= ba

Γ(a) · xa−1

eb·x , when
a def

= θ · r − 1 and b def
= θ · r. This distribution is defined for all n ∈ (0,∞). When r < r?

this PDF is undefined, which corresponds to the solution where nτ = 0 is an absorbing
boundary. See Horsthemke and Lefever (2006, Ch. 6.4) for details. �
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A.3 Continuous Feedback
In Section 2 speculator interactions play out on a much faster timescale than assets

are priced. This subsection shows that, while modeling the continuous feedback
between population dynamics and asset returns might seem more realistic, it would not
eliminate the sudden qualitative change in the excited-speculator population at r?.

Suppose that a 1% increase in the population of excited speculators increases the
risky asset’s return by a factor of ε ∈ [

0, 1
θ·r

)
, producing the following law of motion:

G̃(n, θ, r) def
= θ · r · (1 + ε · n) · (1 − n) × n − n (A3)

The new (1 + ε · n) term captures the idea that an inflow of excited speculators at
time τ will increase the risky asset’s return, which will then make it easier for excited
speculators right now to recruit their friends. If we set ε = 0, then we get back
the original law of motion in Equation (A1). By increasing ε, we allow transient
fluctuations in the excited-speculator population to have a larger and larger effect on
speculator persuasiveness via their effect on the asset’s past returns.

Proposition A.3 (Bubble-Generating Mechanism with Continuous Feedback). Suppose

the excited-speculator population is governed by Equation (A3). Define r?
def
= 1/θ.

1. If r < r?, there is only one steady-state value for the excited-speculator

population, SS(θ, r) =
{
0
}
. This lone steady state, n̄ = 0, is stable.

2. If r > r?, there are two steady-state values, SS(θ, r) =
{
0, (1− ε)−1 · (r− r?)/r >

0
}
. Only the strictly positive steady state, n̄ = (1 − ε)−1 · (r − r?)/r > 0, is stable.

Continuous feedback does not affect the threshold return level, r? = 1/θ, at which a

non-zero population of excited speculators suddenly enters the market.

Understanding how the dynamics of the excited-speculator population interacts
with an asset’s past returns is very important if you want to understand how a particular
bubble episode will unfold. But, it is not essential if all you want to do is understand
the likelihood of a future bubble—i.e., the likelihood that r? will be crossed.

Proof (Proposition A.3). The law of motion in Equation (A3) can we re-written as

G̃(n, θ, r) = (θ · r − 1) × n − θ · r · (1 − ε) × n2 + O[n3]
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Thus, if we ignore third-order terms, then we can solve for the steady-state population
of excited speculators using the same logic as in the proof of Proposition 2.2:

n̄ =


1

1−ε · r−r?
r if r > r?

0 otherwise

If we assume the strength of the continuous feedback is not too strong, ε < (θ · r)−1,
then we will have that n̄ < 1.

Thus, continuous feedback does not affect the threshold, r?, at which speculative
bubbles occur. Adding continuous feedback to the model would not alter any predic-
tions about the likelihood of a future bubble—i.e., the likelihood that this threshold
would be crossed. Because it requires excited speculators to be present, continuous
feedback can only amplify the size of an existing excited-speculator population once
they have already entered the market, 1

1−ε > 1. �

B Additional Empirical Results
This appendix provides additional empirical results that support the findings in

Sections 3 and 4. In Subsection B.1, I give evidence that the definition of a speculative
bubble outlined in Subsection 3.1 is not fined-tuned. I do this by showing that the main
result in Table 5a goes through when using different return cutoffs for the start date,
boom size, and crash severity. In Subsection B.2, I show how to reconcile my findings
with those in Greenwood, Shleifer, and You (2018). Finally, in Subsection B.3, I
document that turnover sharply increases right after the start of a speculative bubble.

B.1 Definition of a Bubble Is Not Fine-Tuned
In Subsection 3.1, I define a speculative bubble as a five-year local price maximum

in a particular industry with at least one boom month in the run up and a crash
following the peak, and I study each bubble episode at its start date. I define a boom
month as an observation with > 100% returns over the past two years (both raw and
net) and > 50% raw returns over the past five years. I define a crash as a < −40%
return from peak to trough. And, I define the start date as the last month prior to the
peak where the industry had < 50% raw returns over the past two years.
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Start Threshold Boom Threshold Crash Threshold GSY
37.5% 62.5% 75% 125% -30% -50% Episodes

(1) (2) (3) (4) (5) (6) (7)

intercept 29.28?? 32.95??? 27.89??? 27.76?? 24.20??? 20.04? 18.23
(2.29) (3.09) (2.60) (2.23) (2.73) (1.91) (1.51)

theta 2.80?? 2.16??? 2.98??? 3.55?? 4.51??? 4.70??? 5.74???

(2.20) (2.71) (3.08) (2.49) (4.97) (4.57) (3.93)

Adj. R2 0.11 0.13 0.14 0.15 0.24 0.26 0.30
#Obs 30 30 32 26 34 26 26

Table B1. Bubble Definition Is Not Fine-Tuned. Dependent variable in all regressions is willBeBubble, an indicator
variable for whether observation precedes a bubble episode. Coefficient of +1 indicates a 1%-point increase in the likelihood
of an industry-month observation being followed by a bubble. Each column reports the results of a separate regression using a
matched dataset. Each pre-bubble case is matched to the most similar industry-month observation without a subsequent
bubble based on retPast2Yr (%), netPast2Yr (%), retPast5Yr (%), bookToMkt, and volatility (%/year) as of the
start date of the bubble. retPast2Yri,t (%): value-weighted return over past two years. netPast2Yri,t (%): value-weighted
return net of the market over past two years. retPast5Yri,t (%): value-weighted return over past five years. bookToMkti,t:
average book-to-market ratio in month t. volatilityi,t (%/year): value-weighted daily volatility in month t. Pre-bubble and
matched observations mechanically look similar along these dimensions. theta (%): empirical proxy for sensitivity of
speculator persuasiveness to increases in past returns. Numbers in parentheses are t-statistics clustered by industry. ?, ??, and
???: statistical significance at the 10%, 5%, and 1% levels.
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Table B1 gives evidence that my main results in Table 5a column (1) are not
fine-tuned in the sense that they do not depend on using these particular threshold
values. Columns (1) and (2) show that, when I use a return threshold for my start date
that is 25% higher or lower, theta still predicts the likelihood of a future bubble.
For these two regressions, I use the same set of 15 bubble episodes listed in Table 1a.
However, I match these cases to otherwise similar control observations earlier in each
bubble’s life cycle in column (1) when the industry has first realized 37.5% over the
past two years. Whereas, I match later in each bubble’s life cycle in column (2) when
the industry has already realized 62.5% returns over the past two years.

Columns (3) and (4) in Table B1 show that, when I use a minimum return threshold
for what constitutes a boom month that is 25% higher or lower, theta still predicts the
likelihood of a future bubble. For these two regressions, I am changing the definition
of what counts as a boom. Column (3) is more inclusive: a boom month is any
observation with > 75% returns over the past two years (both raw and net) and > 50%
raw returns over the past five years. This criteria adds one more bubble episode to
Table 1a. Column (4) is more restrictive: a boom month is any observation with
> 125% returns over the past two years (both raw and net) and > 50% raw returns over
the past five years. This criteria excludes two bubble episodes Table 1a.

Columns (5) and (6) in Table B1 show that, when I use a minimum return threshold
for what constitutes a crash that is 25% higher or lower, theta still predicts the
likelihood of a future bubble. For these two regressions, I am changing the definition
of what counts as a crash. Column (5) is more inclusive: a crash occurs so long as
peak-to-trough returns are < −30%. This criteria adds two more bubble episode to
Table 1a. Column (5) is more restrictive: a crash occurs whenever peak-to-trough
returns are < −50%. This criteria excludes two bubble episodes Table 1a.

Finally, in column (7), I replicate the main analysis in Table 5a column (1) using
the 13 bubble episodes listed in Greenwood, Shleifer, and You (2018, GSY) Table 1a
contained in my sample period. I find that theta is still an economically large and
statistically significant predictor for the likelihood of a future bubble in this sub-sample.
Since I am using GSY’s boom and crash definitions, every episodes in GSY Table 1a
is contained within some episode in my Table 1a. My list of 15 bubbles also contains
two additional episodes where the boom was not immediately followed by a crash.
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B.2 Comparison with Greenwood et al. (2018)
I define a bubble as a local price maximum with at least one speculative boom

during the run up (retPast2Yr > 100%, netPast2Yr > 100%, and retPast5Yr >
50%) and a crash following the peak (> 40% decline). Yet, while the definitions a
speculative boom and crash come from Greenwood, Shleifer, and You (2018, GSY),
many of the variables that predict whether a speculative boom will be followed by a
crash in GSY do not predict the ex ante likelihood of bubbles in this paper.

These discrepancies are not due to some issue with the data or some methodological
conflict. Instead, they are a natural consequence of the fact that I am asking a different
kind of question about bubbles. And this difference in questions leads to four key
differences in our respective empirical approaches. Table B2 shows that, if I a) extend
my sample period, b) exclude bubbles where the first boom month is not immediately
followed by a crash, c) choose control observations based only on past returns, and d)
study the first boom date rather than the start date, then I can qualitatively the main
findings in GSY Table 4.

Columns (1)-(5) in Table B2 report the values provided in GSY Table 4, which
reports the mean and standard deviation of various predictors for the booms with
crashes (Cases; GSY Table 1a) and the booms without crashes (Controls; GSY
Table 1b) respectively. Columns (6)-(10) report analogous summary statistics for the
cases and control observations in a matched sample which uses monthly industry
returns going back to 1926. Each bubble episode during this sample period is
matched to the nearest non-bubble industry-month observation based only on past
returns (retPast2Yr, netPast2Yr, and retPast5Yr rather than retPast2Yr,
netPast2Yr, retPast5Yr, bookToMkt, and volatility) as of the first boom date
(rather than the start date). I also exclude any would-be bubble episodes that do not
immediately crash—i.e., the 19 cases consist of the bubble episodes that suffer a
< −40% peak-to-trough crash within two years of the first boom date.

Table B2 shows that my analysis would look similar to GSY if I had looked at a
longer sample period, if I had used GSY’s more restrictive definition of a bubble, if
I had matched the resulting bubble episodes to control observations based only on
their past returns, and if I had done the matching as of the first boom date. Since I am
matching on past returns, the cases and control observations used in columns (6)-(10)
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Values in GSY Table 4 Matched Data Using GSY Criteria

Cases Controls Cases Controls
Avg Sd Avg Sd Diff Avg Sd Avg Sd Diff
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

retPast2Yr 172.2 34 141.1 22 31.1??? 158.39 28.35 151.43 22.95 6.95
(3.14) (0.83)

bookToMkt 0.29 0.19 0.44 0.20 −0.15? 0.41 0.25 0.46 0.19 −0.04
(1.75) (0.62)

volatility 50.8 12 48.7 12 2.1 49.43 12.95 46.65 22.65 2.78
(0.46) (0.47)

turnover 66.7 17 70.3 14 −3.6 61.07 13.08 67.57 19.07 −6.50
(0.67) (1.23)

age 72.4 21 57.4 17 15.0?? 64.00 19.45 65.01 20.11 −1.01
(2.30) (0.16)

ageTilt 5.3 14 −2.2 8 7.5?? 13.02 20.77 −1.16 10.94 14.18???

(2.46) (2.63)

newIssuance 34.3 18 22.1 14 12.2?? 21.87 8.73 17.81 14.91 4.06
(2.17) (1.02)

∆sales 28.9 18 22.9 12 6.1 62.09 15.47 59.12 13.09 2.97
(1.04) (0.57)

CAPE 25.45 11.32 19.10 4.90 6.35? 29.46 16.43 18.40 7.40 11.06??

(1.87) (2.04)

retAccel 122.8 26 90.5 33 32.3??? 122.85 23.68 94.10 33.69 28.76???

(2.99) (3.04)
#Obs 21 19 19 19

Table B2. Case/Control Data Matched Using GSY Criteria. Columns (1)-(5): values reported in Greenwood, Shleifer,
and You (2018, GSY) Table 4. Columns (6)-(10): analogous summary statistics for a dataset of bubble episodes and matched
controls constructed using GSY’s criteria. Cases: mean and standard deviation for bubble episodes as of the boom date.
Controls: same statistics for matched controls. Difference: difference in means across samples. Numbers in parentheses
are t-statistics clustered by industry. ??: statistically significant at the 5% level. retPast2Yr (%): value-weighted return
over past two years. bookToMkt: average book-to-market ratio in month t. volatility (rank): value-weighted daily
volatility in month t. turnover (rank): value-weighted trading volume divided by shares outstanding in month t. age (rank):
value-weighted firm age in month t. ageTilt (%): difference between equal-weighted and age-weighted return over past two
years. newIssuance (%): percent of firms issuing equity in past two years. ∆sales (rank): value-weighted year-over-year
sales growth. CAPE: market-wide cyclically adjusted P/E ratio in month t. retAccel (%): value-weighted return in months
[t − 23, t] minus value-weighted return in months [t − 23, t − 12].
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Figure B1. Number of Stocks in CRSP. Number of stocks each month from January
1928 to December 2017 with a share code of 10 or 11 in CRSP. y-axis on a log scale.

will mechanically look similar in terms of their past returns. So there is no way to fit
the 31.1% difference in retPast2Yr (%) found in GSY’s original data. However,
almost every other variable looks qualitatively the same in both Greenwood, Shleifer,
and You (2018, GSY)’s data and my matched data when using GSY’s criteria.
bookToMkt is a little higher in the control observations as of the boom date. In

both datasets, bubble episodes tend to have slightly more volatile returns, volatility
(rank), and slightly less turnover in the preceding months, turnover (rank). In both
datasets, bubble episodes’ good returns tend to be disproportionately driven by good
returns among its youngest firms, ageTilt (%), and all firms in the industry are a bit
more likely to have issued new equity, newIssuance (%), and have slightly higher
sales growth, ∆sales (rank). Bubble episodes tend to have booms in months where
market-wide CAPE is higher in both datasets, CAPE. They also tend to have rapidly
accelerating returns in both datasets, retAccel (%).

Firm age is the one remaining difference between our results in Table B2. And this
discrepancy is likely due to a quirk in how GSY define firm age as the “number of
months since the firm first appeared on either Compustat or CRSP.” Figure B1 shows
that there are huge jumps in CRSP’s data coverage in August 1962 and January 1973
that have nothing to do with economic forces. To account for this issue, I redefine firm
age using Compustat’s IPO date whenever this value is available. As a result, bubble
episodes no longer have younger firms, age (rank), but their boom returns are still
driven by the strong performance of their youngest firms, ageTilt (%).
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Figure B2 provides another demonstration that the data themselves are not driving
the difference between my results and those in Greenwood, Shleifer, and You (2018,
GSY). Instead of extending the sample period and requiring booms to be immediately
followed by a crash, I start with the 15 bubble episodes listed in Table 1a. I then
ask, what would happen if I looked for matched controls for each of these bubble
episodes based only on past returns as of the first boom date like in GSY. The dotted
red vertical lines in Figure B2 depict the control observations that I would select using
this alternative approach that mirrors GSY’s criteria. And the dotted blue vertical lines
depict the non-bubble episodes in GSY Table 1b that occur during my sample period.

Every one of the dotted blue lines is selected as a control observation—i.e., has
a dotted red line right on top of it. In other words, if I were to look for matched
controls for my bubble episodes using GSY’s criteria, then I would select the control
observations listed in GSY Table 1b. Figure B2 directly shows that my empirical
exercise can be changed to match GSY’s findings. It just does not make sense to adopt
these changes given the question I am trying to answer in this paper.

B.3 Turnover Goes Up When a Bubble Begins
If the start of a bubble episode is marked by the inflow of excited speculators, then

there should be evidence of this inflow in the form of an increase in trading volume. I
test for the existence of this increase in volume by regressing turnover over in the
subsequent 3, 6, 9, and 12 months on the bubble-indicator variable:

turnoverNext#i,t = α̂ + β̂ × willBeBubblei,t + ε̂s,q

The dependent variable, turnoverNext#, is the value-weighted average turnover of
the ith industry over the next # months. willBeBubble is an indicator for whether an
industry is one of the 15 bubble episodes or one of the 15 matched episodes. Columns
(1), (3), (5), and (7) in Table B3 show that monthly turnover increases following the
start of the bubble episode.

Columns (2), (4), (6), and (8) in Table B3 report analogous results where, instead
of using willBeBubble, I instrument for willBeBubble with theta. When I use
the predicted value of willBeBubble from the regression in column (1) of Table 5a
as the right-hand-side variable, I find a similar effect size. In short, there is strong
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Figure B2. Matches Selected on Past Returns as of the First Boom Month. x-
axis: time in months from January 1975 to December 2017. y-axis (log scale): dollar
value at time t of a continuously reinvested industry-specific portfolio that started with
$1 at the opening bell on the first trading day of January 1975. Grey regions denote
bubble episodes ±2 years. Black regions indicate the normal times. Dotted red lines
denote the matched control observations selected only on the basis of their similarity
to a bubble episode in terms of past returns as of the first boom month. Dotted blue
lines denote control observations listed in Greenwood, Shleifer, and You (2018) Table
1b which occur during normal times.
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Dependent Variable: turnoverNext3 turnoverNext6 turnoverNext9 turnoverNext12
(1) (2) (3) (4) (5) (6) (7) (8)

intercept 25.42??? 25.31??? 23.42??? 20.17? 17.11?? 13.51 14.02 10.03
(3.43) (2.67) (3.09) (1.68) (2.14) (0.95) (1.66) (0.66)

turnover 0.71??? 0.71??? 0.70??? 0.70??? 0.75??? 0.75??? 0.75??? 0.75???

(14.78) (12.37) (11.64) (10.70) (12.21) (10.70) (10.94) (9.39)

willBeBubble 0.25? 0.33??? 0.36??? 0.38???

(1.80) (3.31) (3.72) (3.59)

Ê[willBeBubble|theta] 0.24 0.39?? 0.42?? 0.45??

(1.10) (1.96) (2.06) (2.07)

Adj. R2 0.81 0.79 0.86 0.83 0.88 0.86 0.87 0.84

Table B3. Turnover Goes Up When a Bubble Begins. Each column is a separate regression using the same data as in
Table 2 on 15 pre-bubble observations and a matched sample of 15 observations with no subsequent bubble. The dependent
variable in each regression, turnoverNext#, is the average value-weighted trading volume divided by shares outstanding in
month over the next 3, 6, 9, or 12 months. willBeBubble: indicator variable for industries that will subsequently experience
a bubble. Numbers in parentheses are standard errors clustered by industry. Significance: ? = 10%, ?? = 5%, and ??? = 1%.
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evidence that trading activity in an industry spikes the moment a bubble episode begins,
which is consistent with the idea that bubbles are the result of a sudden inflow of
excited speculators.

The key insight pertains to the ex ante likelihood that some bias-constraint pair
will bind. When that happens, an excited crowd of speculators will enter the market,
resulting in an increase in trading volume. How trading volume in an industry will
evolve from there on out will intimately depend on the specific bias-constraint pair
sustaining the bubble, though. e.g., see Figure 3 and the surrounding discussion in
Section 2.3. For this reason, I only look for the initial increase in trading volume a the
start of a bubble episode. It does not make sense to use the theoretical framework in this
paper to resolve patterns in trading volume during bubbles (cf. DeFusco, Nathanson,
and Zwick, 2017; Barberis, Greenwood, Jin, and Shleifer, 2018; Liao and Peng, 2019).
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