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1 Introduction

In an efficient market, if a few stocks suddenly get mispriced because they share a
common feature, such as being involved in a crowded trade or getting mentioned in an
M&A rumor, then fully-rational traders should rapidly exploit and eliminate this
error. However, markets do not always appear eflicient, and people have suggested a
variety of trader shortcomings to explain why. For instance, traders might face limits
to arbitrage as in Miller (1977), suffer from cognitive biases as in Daniel, Hirshleifer,
and Subrahmanyam (1998), or exhibit the symptoms of non-standard preferences as in
Barberis, Huang, and Santos (2001).

But, is it always right to blame traders? Perhaps a market’s inefficiency has more
to do with its dimensions than with its traders’ limitations? After all, modern financial
markets are extremely complex and densely interconnected. For any given pricing
error, there are often many plausible explanations. Did Callaway Golf’s stock just
plunge because it happened to be involved in a crowded short-term trading strategy?
Or was it because there is some truth to that new rumor about Callaway acquiring
Fortune Brand? A trader should respond differently to each of these hypotheses,
shorting the other stocks in the crowded strategy in the first case and buying shares of
Fortune in the second. In a high-dimensional setting where assets can share many
overlapping features, i.e., where Callaway can be both involved in a crowded trade and
mentioned in an M&A rumor, markets do not always provide enough information to
sort through the many competing hypotheses.

This paper shows that, when traders have to simultaneously decide which features
are mispriced and how they should be correctly valued, the risk of selecting the wrong
features can spill over and distort how they value assets. The high-dimensional nature
of financial markets can act like a cognitive constraint even if traders are fully rational.

Imagine you are a trader, and each company’s stock returns can have exposure
to any combination of 7 features: #1) whether the company has been involved in a
crowded trade (Khandani and Lo, 2007), #2) whether it has been mentioned in a news
article about M&A activity (D’ Aspremont and Luss, 2012), #3) whether there has been
an announcement about its major supplier (Cohen and Frazzini, 2008), #4) whether
its labor force has recently unionized (Klasa, Maxwell, and Ortiz-Molina, 2009),

#5) whether the company belongs to the tobacco industry (Hong and Kacperczyk,
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2009), #6) whether it has been referenced in a scientific journal article (Huberman and
Regev, 2001), and #7) whether the company has recently been added to the S&P 500
(Barberis, Shleifer, and Wurgler, 2005). Moreover, suppose you have a hunch that
there has been a shock to one of these features, but you do not initially know which
one. All you know is that the market has not fully appreciated the shock, and stocks
with this mystery feature will realize abnormal returns of @ > 0 in the near future.
How many stock returns do you need to see to figure out which, if any, of the shocks
has occurred? Three.

Suppose the first company has exposure to features {1, 3,5, 7}—i.e., it is involved
in a crowded trade, there has been an announcement about its major supplier, it
belongs to the tobacco industry, and the company has been recently added to the S&P
500. Similarly, suppose that the second company has exposure to features {2, 3, 6, 7}
and the third company has exposure to features {4, 5, 6, 7}. The abnormal returns for
these three stocks always reveals exactly which feature-specific shock has occurred.
For instance, if only the first stock has positive abnormal returns, ar; = a while

ar, = arz = 0, then it must have been a crowded trade:

ar a 1 01 01 01 0
ar,|=101=10 1 1 0 O 1 1}|]. (D)
ars 0 00O0T1T1T1T1 O

Whereas, if both the first and the third stock have positive abnormal returns, ar; =
ary = a while ar, = 0, then it must have been a shock to the tobacco industry. There
is no way to identify which feature-specific shock has occurred using fewer stocks.
You need at least 8 bits of information to pick out which of the 7 feature-specific
shocks has occurred and rule out the possibility of no change and 2° = 8.

Now, to see how this relates to market efficiency, rewind the clock and consider the
problem you face after seeing only the first two companies’ abnormal returns, ar; = @

and ar, = 0:
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Since the first and the fifth columns are [ 1 0], you know that either a crowded trade
has occurred or a tobacco-industry shock has occurred. It has to be one of these two
features since these are the only two features that the first company has exposure to but
the second company does not. So, what is the right way to value the third company’s
stock which has exposure to features {4, 5, 6, 7}, meaning that it is in the tobacco
industry but not involved in a crowded trade?

There are two possibilities. In the event of a crowded trade, you should leave the
third company’s value unchanged; whereas, if there was a tobacco-industry shock,
then you should revise your valuation. Thus, after seeing only two observations,
you have to split the difference. If it was in fact the tobacco-industry shock, then
you will only update halfway, and it will look like you were slow to react to public
information. By contrast, if it was a crowded trade, then when you revise your
valuation of the third company’s stock halfway, it will look like you were over-reacting
to noise. Nevertheless, this is the best you can do in real time. It is not like you are
making some cognitive error or fighting against some trading friction. Instead, it is the
dimensionality of your inference problem that is generating the extra risk, that is
warping your perception of the third company’s value, that is distorting prices.

Of course, this is just a stylized example. There are only a handful of assets,
each asset’s feature exposures are hand-picked, and their fundamental values do
not reflect standard risk factors. To address these concerns, I apply tools from the
compressed-sensing literature to generalize the result and show that if traders have

seen fewer than N*(Q, K) observations'

N*(Q,K) =< K - log(Q/K) 3)

then, no matter what inference strategy they use, traders cannot always identify which
features have realized a shock in a large market with an arbitrary number of features, Q,
and an arbitrary number of shocks, K. This feature-selection bound holds even when
feature exposures are randomly assigned and when companies’ fundamental values
reflect the usual risk factors. Moreover, in the presence of noise, some feature-selection

risk will remain even after the bound has been reached. Thus, feature-selection risk is

! fy = gn denotes asymptotically bounded above and below, implying both fy = O(gy) and gy = O(fy).



endemic to any high-dimensional market. If assets share many overlapping features,
then markets might not provide enough information to pinpoint exactly which ones
matter. It is as if the high-dimensional nature of the market is introducing a cognitive
constraint even though the traders themselves are fully rational.

In order to quantify the extent to which feature-selection risk limits market
efficiency, I study a Kyle (1985)-type model with N assets whose values are a function
of K < Q feature-specific shocks. The model is entirely standard except for one key
detail: uninformed traders, like the market maker and any would-be arbitrageurs, do
not know ahead of time which K feature-specific shocks to analyze. For instance, if
there is a lot of demand for Callaway Golf, the market maker now has to ask herself: Is
this demand saying something about a feature-specific shock? If so, which one? Or
did Callaway just happen to realize a large noise-trader demand shock? By adding this
simple twist, it is possible to extend the standard information-based asset-pricing
models to allow for feature-selection risk. When uninformed traders now have to infer
both the identity and the size of the K <« Q feature-specific shocks, they are less
responsive to aggregate demand shocks than in the original Kyle (1985) setup, making
equilibrium prices less accurate.

If the market maker has to sort through a sufficiently large number of potentially
relevant features, then she is likely to make a feature-selection error, regardless of the
volatility of noise-trader demand. What’s more, real-world traders often try to exploit
this fact. For example, the co-CEO of Renaissance Technologies, Robert Mercer, has
pointed out that “some signals that make no intuitive sense do indeed work. .. The
signals that we have been trading without interruption for 15 years make no sense,
otherwise someone else would have found them.”” Such signals are hidden in a large
feature space rather than behind a lot of noise-trader demand volatility.

Finally, I give empirical evidence that real-world traders actually care about solving
this joint inference problem. To do this, I collect data on 79 different monthly factors
that have been used in the asset-pricing literature. Then, for each NYSE stock I
analyze 24-month rolling windows from January 1990 to December 2010, estimate
the K <« 79 important factor loadings using a penalized-regression procedure, and

predict the stock’s excess return in the subsequent month. This penalized regression

2Mallaby, S. (2010) More Money Than God (1 ed.) Penguin Books.



sets all of the “smaller” factor loadings to zero and makes it possible to estimate a
sparse subset of the 79 coeflicients using only 24 months of data, an approach that
would clearly be unidentified using the standard regression techniques. Using this
estimation strategy that explicitly accounts for traders’ feature-selection problem
increases the accuracy of out-of-sample return predictions at the monthly horizon by
144.3%, from R?* = 3.65% to R*> = 9.35%! Thus, solving this joint inference problem

is very important for real-world traders.

1.1 Related Literature

This paper borrows from and brings together several strands of literature. First, the
current paper is closely related to the literature on bounded rationality; yet, there is a
fundamental difference in approaches. Existing theories use cognitive constraints to
induce boundedly rational decision making. For example, papers like Sims (2006) and
Hong, Stein, and Yu (2007) suggest that cognitive costs force traders to use overly
simplified mental models, and Gabaix (2013) derives the sort of mental models that
traders would choose when facing ¢, thinking costs. By contrast, I use bandwidth
constraints on a market’s signals rather than on a trader’s processing power to generate
similar behavior. Both channels are at work in asset markets. This paper is the first to
articulate the bandwidth constraint on a finite set of market signals. To do this, I use
the results from the compressed sensing literature, which originated with Candes and
Tao (2005) and Donoho (2006).

Second, the model relies on the fact that asset values are governed at least in
part by a constantly changing cast of feature-specific shocks. Chinco, Clark-Joseph,
and Ye (2019) provides evidence both that assets realize many different kinds of
characteristic-specific shocks and also that it is hard for traders to identify which ones
are relevant in real time. This assumption is consistent with, but separate from, existing
asset-pricing models. On the theoretical side, it is possible to fit this high-dimensional
problem into many popular asset-pricing models since they contain substantial amounts
of theoretical “dark matter” in the language of Chen, Dou, and Kogan (2014).

On the empirical side, the high-dimensional and ever-changing nature of trader’s
problem has been documented in a series of papers on data-snooping. For a representa-

tive sample, see Lo and MacKinlay (1990), Sullivan, Timmermann, and White (1999),



and Kogan and Tian (2014). In particular, Kogan and Tian (2014) notes that parameter
estimates for factor loadings are “highly sensitive to the sample period choice and the
details of the factor construction. In particular, there is virtually no correlation between
the relative model performance in the first and the second halves of the 1971-2011
sample period. Using a two-way sort on firm stock market capitalization (size) and
characteristics to construct model return factors, an often used empirical procedure,
similarly scrambles the relative model rankings.”

Campbell, Lettau, Malkiel, and Xu (2001) also give evidence that the usual factor
models only account for a fraction of firm-specific return volatility. For example, if
you selected an NYSE/AMEX/NASDAQ stock at random in 1999, market and industry
factors only accounted for 30% of the variation in its daily returns. Recent work by
Ang, Hodrick, Xing, and Zhang (2006), Chen and Petkova (2012), and Herskovic,
Kelly, Lustig, and Van Nieuwerburgh (2014) gives strong evidence that there is
a lot of cross-sectional structure in the remaining 70% of so-called idiosyncratic
volatility—i.e., patterns in past idiosyncratic volatility are strong predictors of future
returns. Thus, some portion of the 70% remainder appears to be neither permanent
factor exposure nor fully idiosyncratic events.

Finally, this paper also gives a mathematical foundation for Hayek (1945)’s notion
of local knowledge. A trader who benefits from specialized experience with particular
assets 1s the canonical example of local knowledge. One way to interpret the results is
as something of an anti-Harsanyi doctrine and a microfoundation for the behavioral
finance literatures on disagreement (Hong and Stein, 2007) and noise trading (Black,
1986). This paper gives a situation where 2 rational Bayesian market makers can look
at the exact same aggregate demand schedules for N < N*(Q, K) assets and not have

the same posterior beliefs due to the dimensionality of the problem.

2 Baseline Equilibrium Model

I begin by characterizing a baseline equilibrium where traders do not face any
feature-selection risk. Specifically, I assume that they have access to an oracle alerting
them to the K features that have realized a shock but not the size or sign of this
shock. I will return to this baseline model later as a point to comparison to answer the

question: how does feature-selection risk alter the usual predictions?



2.1 Market Structure

I study a market containing N risky assets with fundamental values, v,, governed

by exposure to Q features:
Vp = 25:1 Ay - Xng (4)

where x,, ~ Normal(0, 1) denotes asset n’s exposure to the gth feature and a,
denotes the size of the shock to feature g. So, for example, if there is a shock of size
QTobacco = 1 to stocks in the tobacco industry, then the share price of a company in
that industry, X, Topacco = 1, Will rise by $1.

I consider the setting where everyone knows each asset’s feature exposures x,. i.e.,
all agents have a detailed list of whether or not each asset has been involved in a
crowded trade, mentioned in an article on M&A activity, suffered a setback to one of
its suppliers, etc. .. If there is any uncertainty in later sections, it will be about which
elements in a are non-zero. For instance, traders might be uncertain about whether or
not the tobacco industry has realized a shock, but they will never be uncertain about
whether a particular company is in the tobacco industry.

Because each asset has different feature exposures, each asset will manifest a
feature-specific shock in a slightly different way. For example, we know that some
stocks are more likely to be included in statistical arbitrage strategies than others,
news of M&A activity has an opposite effect on the acquirer and the target, and some
companies are more strongly impacted by news about a particular supplier than others.
Suppose that asset 1 has exposures to the stat-arb-strategy, M&A activity, and supplier
stock features given by x; = [ 1.50 0.50 —0.10]" while asset 2 has feature exposures
x, =[-0.50 —0.75 1.00]7. Each stock’s value will then be:

Vi = @spian X (+1.50) + apmga X (+0.50) + @geontink X (=0.10) + - - (5a)

V2 = @spaiarn X (—0.50) + apmga X (=0.75) + @gconLink X (+1.00) + - - (5b)

Thus, a positive M&A activity shock of ayga = 1 will lead to a $0.50 rise in the
fundamental value of asset 1. By contrast, the same shock will lead to a $0.75 decline
in the fundamental value of asset 2. Same shock. Different feature exposures. Opposite

affects on value.



To capture the idea that only a few of the many possible features that might impact
a stock’s value each period actually matter, I study a world where only K of the

elements in @ are non-zero

K =llello = 22, Lia,s0 (6)

with Q > N > K and K denoting the set of shocked features. I also assume the vector
of feature-specific shocks, @, satisfies the following conditions:

1. K c{l1,2,...,0j}1is selected uniformly at random.

2. The signs of @« are independent and equally likely to be —1 or +1.

3. The magnitudes of ¢« are independent and bounded by am.x > |yl > 0.
To be sure, shocks are never really exactly sparse; they are only approximately sparse
meaning that they may be well approximated by sparse expansions. All of the results
in this paper go through if you assume that K features realize shocks that are much
bigger than the rest.

This market structure means that it is possible for a trader to see several assets
behaving wildly without being able to put his finger on which K feature-specific
shocks are the culprit. For instance, the chairman of Caxton Management, Bruce
Kovner, notes that there are often many plausible reasons why prices might move
in either direction at any point in time. “During the past six months, I had good
arguments for the Canadian dollar going down, and good arguments for the Canadian

3 This was not

dollar going up. It was unclear to me which interpretation was correct.
a situation where Kovner had to learn more about a well-defined trading opportunity;
rather, the challenge was to pick which explanation to trade on in the first place.
Kovner faced feature-selection risk.

Of course, sometimes traders are not in the business of spotting feature-specific
shocks. For example, a January 2008 Chicago Tribune article about Priceline.com
reported that “a third-quarter earnings surprise sent [the company’s] shares skyward in
November, following an earlier announcement that the online travel agency planned to

make permanent a no-booking-fees promotion on its airline ticket purchases.” No

3Schwager, J. (1989) Market Wizards: Interviews with Top Traders. (1 ed.) New York Institute of
Finance.
4DiColo, J. (2008, Jan. 20) Priceline’s Power Looks Promising in Europe, Asia. Chicago Tribune.



one was confused about why Priceline’s price rose. The only problem facing traders
was deciding how much to adjust the price. Existing information-based asset-pricing

models are well suited to this setting.

2.2 Objective Functions
There are two kinds of optimizing agents, asset-specific informed traders and a
market-wide market maker, along with a collection of asset-specific noise traders.
Asset-specific informed traders know the fundamental value of a single asset, v,,
and solve the standard static Kyle (1985)-type optimization problem with risk neutral
preferences,

manE[(vn—pn)-ylvn] @)

where y denotes the size of asset n’s informed trader’s market order in units of shares
and p, denotes the price that they pay in units of dollars per share. Crucially, for these
traders, the fundamental value of each asset is just a random variable with no further
structure. They do not observe which K feature-specific shocks govern its value.
There are a couple of ways to justify this assumption. First, you might think about
the asset-specific informed traders as value investors. For instance, Li Lu, founder of
Himalaya Capital and well known value investor, suggests that in order to gain market
insight you should “Pick one business. Any business. And truly understand it. I tell
my interns to work through this exercise—imagine a distant relative passes away and
you find out that you have inherited 100% of a business they owned. What are you
going to do about it?”° It is like they have a gut instinct. Alternatively, you can think
about the informed traders as getting a signal about the level of noise-trader demand in
a given asset. They can then invert this information about noise-trader demand to learn
something about fundamentals, v,, without learning its underlying structure.

The market-wide market maker observes aggregate demand, d,, for each asset
d, = Ynt+ 2n ®)

which is composed of demand from asset-specific informed traders, y,, and from noise

traders, z, X Normal(O, Ug). He then tries to set the price of each asset as close as

SLu, L. (2010) Lecture at Columbia Business School.



possible to its fundamental value given the cross-section of aggregate demand:
min B( - X (=)’ |d) ©)

Put differently, competitive pressures force the market maker to try and minimize the
mean squared error between the price and each asset’s value.

Notice that this formulation of the market maker’s problem is slightly different
from the one in the original Kyle (1985) model. Here, the market maker explicitly
minimizes his prediction error; whereas, in the original setup, the market maker just
sets the price equal to his conditional expectation, which happens to minimize his
prediction error since there are as many assets as shocks. In the current paper, it is
important that the market maker explicitly minimizes his prediction error because the
conditional expectation will no longer be well defined when there are more possible
feature-specific shocks than assets.

Because there are many more features than assets, Q > N > K, the market maker
must use a feature-selection rule ¢(d, X) that accepts an (N X 1)-dimensional vector of
aggregate demand as well as an (N X Q)-dimensional matrix of features and then

returns a (Q X 1)-dimensional vector of estimated feature-specific shocks:

¢ : RY x RV*? — R? (10)
aZ ¢(d, X) denotes the estimated shocks. Later, I will give bounds on how well the
best possible feature-selection rule can perform in a market with Q features, K shocks,
and N assets. The nature of the equilibrium asset prices will depend on how much
information about the sparse feature-specific shocks, @, the market maker can tease out
of the cross-section of aggregate demand, d. It is clear that real-world traders worry
about how much their market maker can learn from the combination of their orders.
Quant hedge funds place orders for different legs of the same trade with different

brokers to make it difficult for brokers to do this sort of reverse engineering.

2.3 Oracle Equilibrium

Let’s now explore the equilibrium when the market maker has an oracle telling

him exactly which K features have realized a shock. It turns out that the coefficients in
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Proposition 2.3 below are identical to the standard Kyle (1985) model coeflicients.
This fact highlights how existing information-based asset-pricing models implicitly
assume that all traders know exactly which features to study.

Figure 1 summarizes the timing of the model. First, nature assigns feature
exposures to the N assets and picks a subset of K features to realize shocks. After
the exposures and shocks have been drawn but before any trading takes place, the N
asset-specific informed traders learn the fundamental value of their own asset, v,, and
the single market maker common to all N assets observes which K features have
realized a shock (but not the size or sign of these shocks). Finally, trading takes place.
Each of the N informed traders and noise traders places a market order. Then, the
market maker observes each asset’s aggregate order flow, updates his conditional
expectation about their values, and sets prices accordingly.

An equilibrium, & = {6, A}, is a linear demand rule for each of the N asset-specific
informed traders, y, = 6 - v,, and a linear pricing rule for the single market maker
common to all N assets, p, = 4 - d,, such that (a) the demand rule 8 solves Equation
(7) given the correct assumption about A and (b) the pricing rule A solves Equation (9)

given the correct assumption about 6.

Proposition 2.3 (Oracle Equilibrium). If the market maker knows K, then there exists

an equilibrium defined by coefficients:

A1=1/2-6) (11a)
0= vK/N - (0./0)) (11b)

Because there are more assets than feature-specific shocks, the market maker can

just run the standard OLS regression
d,/0 = x,QoLs + € (12)

to estimate &orLs. Knowing these coeflicients then gives him an unbiased signal,

X @oLs, about each asset’s fundamental value. This signal has variance

E[IlV - X dowsl3 /N | = K - (02/6°) /N (13)
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Timing in Oracle Equilibrium

Start Trade End

Figure 1: What each agent knows and when they know it in the model where the
common market maker knows which K features have realized a shock. “Nat” is nature.
“VI” is the value investor. “MM?” is the market maker.

where v is an (N X 1)-dimensional vector of asset values. Using his priors on the
distribution of each asset’s value, v, ~ Normal(0, 0'%), he can then use DeGroot (1969)
updating to form posterior beliefs. The market maker’s signal error is increasing
in the variance of noise-trader demand, so he has a harder time figuring out if a
positive demand shock is due to noise traders or just a really strong fundamental value
realization. Thus, more noise-trader demand volatility means informed traders have an

easier time masking their trades allowing them to trade more intensely.

3 Feature-Selection Bound

We just saw what the equilibrium looks like when traders know exactly which
features to analyze. Let’s now look at how hard it is to recover this information without
an oracle. Specifically, I show that, if the market maker has not seen at least N*(Q, K)
observations, then he will always suffer from feature-selection risk and will always
make some errors in picking which features to analyze, no matter what inference

strategy he uses and even if he is fully rational.

3.1 Theoretical Minimum

Suppose that the market maker was the most sophisticated trader ever and could
choose the best inference strategy possible, ¢g.s,. HOw many observations does he

need to see to be sure that he has identified which feature-specific shocks have taken
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place? He does not need to see Q observations since the vector a is K-sparse. But
what is this bare minimum number?

To answer this question, I consider limiting results for sequences of markets
{(Ons Kn)}nso where the number of features, Q = Qy, and the sparsity level, K = Ky,

are allowed to grow with the number of observations, N:
Allim On, Ky = ]\l]im Ky/On =0 (14)

For example, take K = 1/Q. This asymptotic formulation captures the spirit of traders’
joint inference problem. For instance, Daniel (2009) notes that during the Quant
Meltdown of August 2007 “markets appeared calm to non-quantitative investors. . . you
could not tell that anything was happening without quant goggles” even though large
funds like Highbridge Capital Management were suffering losses on the order of 16%.°
All stocks with exposure to the held-in-a-stat-arb-strategy feature realized a massive
shock, but this feature was just one of many plausible feature-specific shocks that
might have occurred ex ante. Unless you knew where to look (had “quant goggles™),
the event just looked like noise.

I define the market maker’s feature-selection error as the quantity
FSE[¢] = E[lIS[a] - S[a]ll. ] (15)
where the operator S[-] identifies the support of a vector:

A 1 ifa, #0
Slay] = (16)
0 ifa,=0

The £.,-norm gives a 1 if there is any difference in the support of the vectors and a 0
otherwise. In words, FSE[¢] is the probability that the market maker’s selection rule,
¢, chooses the wrong subset of features when averaging over not only the measurement

noise but also the choice of the Gaussian exposure matrix, X. Let ® denote the set of

all possible inference strategies the market maker might use. If there exists some

6Zuckerman, G., J. Hagerty, and D. Gauthier-Villars (2007) Mortgage Crisis Spreads. Wall Street
Journal.
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inference strategy ¢ € ® with FSE[¢] = 0, the market maker can use this approach to
always select which feature-specific shocks have taken place with probability 1—i.e.,
there exists (at least in principle) an inference strategy that would be just as good as
having an oracle. It may not be computationally feasible, but it would exist.

The feature-selection bound in Proposition 3.1 below then says that no such
strategy exists when the market maker has seen fewer than N*(Q, K) observations.
When N < N*(Q, K), at least a few feature-selection errors are unavoidable regardless

of what approach ¢ € ® the market maker takes.

Proposition 3.1 (Feature-Selection Bound). If there exists a constant C > 0 such that
N < C- Ky -log(QOn/Ky) (17)
as N — oo, then there exists some constant ¢ > 0 such that

min FSE[¢] > ¢ (18)

The threshold value N*(Q, K) =< K - 1og(Q/K) is the feature-selection bound.

Importantly, Proposition 3.1 does not make any assumptions about the market
maker’s cognitive abilities. It says that when N < N*(Q, K) the market maker has to
be misinterpreting aggregate-demand signals at least some of the time due to the nature
of his sparse, high-dimensional, inference problem. Put another way, this minimum
number of observations is a consequence of a theoretical bound on how informative
market signals can be rather than a consequence of thinking costs or trading frictions.
In some sense, it has nothing to do with the market maker. He could be Einstein,
Friedman, and Kasparov all rolled into one and it would not matter. There is simply a
lower bound on the amount of data needed to say anything useful about which market
events have taken place using the cross-section of aggregate demand. This is a very
different way of thinking about why rational traders sometimes misinterpret market

signals. This result is first derived in Wainwright (2009a).

3.2 Discussion
There are a couple of points about the interpretation of Proposition 3.1 worth

discussing in more detail. First, while the asymptotics are helpful for analytical reasons,
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they are not critical to the underlying result. There is a qualitative change in the nature
of any inference problem when you move from choosing which feature-specific shocks
have occurred to deciding how large they must have been. To see why, let’s return to
the example in Section 1 where only 1 of the 7 features might have realized a shock,

and consider the more general case where any of the 7 features could have. This gives

R

different feature combinations. Thus, N*(7,7) = 7 provides a trader just enough
differences to identify which combination of features has realized a shock. More
generally, for any number of features, Q, a trader needs 29 = ZkQ:O (g) observations to
detect shocks if he has no information about K. This gives an information theoretic
interpretation to the meaning of “‘just identified” that has nothing to do with linear
algebra or matrix invertibility.

Second, these asymptotics do not pose a practical problem when applying the
bound. To begin with, real-world markets are finite but very large, so the asymptotic
approximation is a good one. While it is not possible to give a precise formulation of
the feature-selection bound in the finite sample case, practical compressed sensing
techniques can make error-rate guarantees in finite samples. What’s more, analysts
regularly make this sort of asymptotic-to-finite leap in mainstream econometric
applications. For example, the practical implementation of GMM involves a 2-step
procedure as outlined in Newey and McFadden (1994). The first step estimates the
coeflicient vector using the identity weighting matrix on the basis that any positive-
semidefinite weighting matrix will give the same point estimate in the large 7" limit.
The second step uses the realized point estimates to compute the standard errors.

Finally, the result in Proposition 3.1 is likely too optimistic about the ability of the
most sophisticated market maker since it makes no assumptions about the inference
strategy being convex. How much harder could the non-convex approach be? A lot.
Consider the example from the Introduction. Suppose that Q = 400, and I told you that

exactly K = 5 of the features were mispriced. You can certainly try to solve the general
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400
5

procedure. This is a huge number of cases to check on par with the number of bits in

problem by tackling each of the ( ) ~ 8.3 x 10'° sub-problems with a regression
the human genome. As Rockafellar (1993) writes, “the great watershed in optimization

isn’t between linearity and nonlinearity, but convexity and non-convexity.”

4 Feature-Selection Risk

If the market maker has not seen at least N*(Q, K) observations, then he will
always suffer from feature-selection risk no matter what inference strategy he uses.
Let’s now introduce this feature-selection risk into the baseline asset-pricing model to
see how it warps the market maker’s perception of asset values. The basic equilibrium
concept will remain completely standard. The key question to ask is: how much
information about which K feature-specific shocks have occurred can the market

maker infer from the cross-section of aggregate demand of N stocks?

4.1 Inference Strategy

To solve for equilibrium asset prices, I need to compute the market maker’s
posterior beliefs after observing the cross-section of aggregate demand, d. This means
I need to make a choice about which inference strategy the market maker uses.

I study a market maker who uses the least absolute shrinkage and selection operator
(LASSO) outlined in Tibshirani (1996)

& = argmin{|| X @ - d/0I; +- @, | (20)

for y > 0. The ¢, norm means that the LASSO sets all coefficient estimates with
lay| <y equal to zero. It generates a preference for sparsity. For example, if there
were no y - ||@||,, term, then the inference strategy would be equivalent to ordinary
least squares which is not well-posed for Q > N. The tuning parameter, y, controls
how likely the estimation procedure is to get false positives. To screen out spurious
variables, you want y to be large; however, increasing y also means that you are more
likely to ignore meaningful variables that happen to look small in the data by chance.
Decreasing y to reduce this problem floods the results with spurious coeflicients.
Note that in the current paper, the use of the £;-norm is not a consequence of

bounded rationality as in Gabaix (2013). Rather, it is simply a way for the market
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maker to draw an inference about the value of each asset given the cross-section of
aggregate demand. Since the market maker does not have access to an oracle, there are
now more features than stocks, Q > N. As a result, his inference procedure needs
to have a preference for sparsity. Any penalty with a norm p € [0, 1] will do. For

example, think about the ¢, problem:
& = argmin{[| X @~ /01l + - &L, | @1)

However, a penalty with a norm p € [0, 1) generates a non-convex inference problem
which is computationally intractable. Natarajan (1995) explicitly shows that £,
constrained programming is NP-hard. Thus, the £; norm, which sits right on the
boundary of the two regions, is the natural choice for the penalty. What’s more, when
feature exposures are drawn independently from identical Gaussian distributions
as they are in the current paper, the LASSO comes within a logarithmic factor of
optimality as shown in Wainwright (2009b).

4.2 Equilibrium Using the LASSO

We can now solve for the equilibrium coefficients in the more general setting
where the market maker does not have access to an oracle and must solve a sparse,
high-dimensional, inference problem on his own. I show that informed traders in this
new model earn higher profits since they can hide behind both noise-trader demand
volatility and feature-selection risk.

Candes and Plan (2009) prove that if the market maker sees the aggregate demand
for at least N*(Q, K) assets, then the LASSO gives a signal about each asset’s value, v,

with a signal error that satisfies the inequality below
IX drasso = vl /N < C* - log(Q) x K - (02/6%) | N (22)

with probability approaching unity as N — oo for € =2 - V2 (1 + V2). Where does
this C? - log(Q) factor come from? Because the market maker has to simultaneously
decide both which asset features have realized a shock and also how large they were,
he will sometimes make errors in identifying which features have realized a shock.

When he does so, there will be additional noise in his posterior beliefs about each
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asset’s fundamental value. It is these feature-selection errors that increase the variance
of his posterior beliefs by a factor C? - log(Q) relative to when he had an oracle.
The equilibrium concept will be the same as before. An equilibrium, &, = {6, 4}, is
a linear demand rule for each of the N asset-specific informed traders, y, = 6 - v,, and
a linear pricing rule for the single market maker common to all N assets, p, = A - d,,,
such that (a) the demand rule 6 solves Equation (7) given the correct assumption
about A and (b) the pricing rule A solves Equation (9) given the correct assumption
about ¢ and assuming the market maker uses to the LASSO to solve his sparse,

high-dimensional, inference problem.

Proposition 4.2 (Equilibrium Using the LASSO). If the market maker uses the LASSO

withy =2 -(0,/0) - 2 -log(Q) to identify and interpret feature-specific shocks and
N > N*(Q, K), then there exists an equilibrium defined by coefficients

A=1/2-6) (23a)
0 =C- \log(Q) x VK/N - (0./,) (23b)

for some positive numerical constant 0 < C < C.

The key takeaway from Proposition 4.2 is that increasing Q, the number of
payout-relevant features that a market maker has to sort through, makes the price
less responsive to demand shocks. This happens via two different channels. First,
increasing Q raises the feature-selection bound, N*(Q, K), so that the market maker
has to see more assets before he can correctly identify which features have realized a
shock. When there are fewer than N*(Q, K) assets for the market maker to inspect, the
LASSO does not reveal anything about which feature-specific shocks have occurred.
Thus, in this regime, the common market maker effectively operates in N distinct asset
markets. Each asset’s demand gives him information about that particular asset’s
fundamental value, but he cannot extrapolate this information from one asset to the
next. Second, increasing Q makes the market maker less certain about his inferences.
It imposes a penalty on the precision of the market maker’s posterior beliefs of
C? - log(Q) per unit of fundamental volatility. It takes time to decode market signals.

Proposition 4.2 includes a numerical constant C. The exact value of this numerical

constant will depend on the distribution of the sizes of the K feature-specific shocks.
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The exact value of the constant can be found numerically by bootstrap procedures—i.e.,
by repeatedly estimating the LASSO on sample datasets. For example, when the
magnitude of the K feature-specific shocks is drawn q, X +Unif[1,2] - (0./9),
simulations reveal that C = 2 - (1 + V2) ~ 4.82. I make no effort to characterize this
value further because it depends on the gritty details of the asset value distribution.
Changing C slightly does not alter the qualitative intuition behind the impact of

feature-selection risk.

S Empirical Evidence

Feature-selection risk should only matter when traders face a joint inference
problem—i.e., when traders have to simultaneously decide both which features are
mispriced and how they should be correctly valued. Is there any evidence that traders
actually care about this problem in the real world? Yes. Following the approach
introduced in Chinco, Clark-Joseph, and Ye (2019), I show that using an estimation
strategy which explicitly accounts for traders’ joint inference problem increases the
accuracy of out-of-sample return predictions at the monthly horizon by 144.3%, from
R? = 3.65% to R* = 9.35%! Thus, solving this joint inference problem is important to

real-world traders.

5.1 Econometric Approach

Let’s first look at what it means to say that an estimation strategy accounts
for traders’ joint inference problem. I begin by estimating a benchmark AR(1)

specification using rolling 24-month sample periods
Py = Go+ P11 + En (24)

like in Jegadeesh (1990). This amounts to minimizing the squared prediction error

#cR2

) 1 24
¢ = min {ﬂ ) Z (70 — {d0 + @1 - rxn,t—l})z} (25)
t=1

which is easy to do since there are many more observations, 24, than there are

coefficients, 2.

19



After fitting the regression coeflicients, I then predict the subsequent month’s

returns:
AR(1 ~ ~
Bilrxum] = £ = §o + b1 - 1, (26)

If fAtR(l) is a good predictor of the realized excess return, rx, .1, then traders only have

n,

to think about stock-specific considerations when predicting future returns. I measure

AR(1)

.. by the R? of an out-of-sample regression

AR(1) AR(1)

~ ~ fn,t — My

Xy = Ay + bn : T(]) + €nrr1
("

the predictive power of

27)

AR(1) AR(1)

where u,, and o7, are the mean and standard deviation of the predictor AR

n,t

Next, I estimate the relationship between each stock’s monthly excess returns and
a large collection of Q predictors where Q > 24. Since there are more plausible
predictors, @, than months in the sample period, 24, the estimation strategy in Equation
(25) is no longer valid. Instead, it is necessary to use a penalized regression. I use the
least absolute shrinkage and selection operator (LASSO) as introduced in Tibshirani
(1996) and used in Section 4 above. This means choosing a ([Q + 1] X 1)-dimensional

vector of coefficients using the optimization problem below:

1 24 0o 2 Y
A — . . t— + . _ + /l . 28
) ¢rerllelQI11 Y ; IXp: = 3 @0 ; ®q fai-1 ; gl (28)

The LASSO penalty function, A - Zqul lyl, sets all OLS coeflicient estimates that are
smaller than |¢,| < A to zero as discussed in Section 4 above. Thus, the LASSO both
selects and estimates the relevant coefficient loadings. This is the sense in which the
LASSO explicitly incorporates traders’ joint inference problem.

After fitting the regression coeflicients, I again predict the subsequent month’s

returns:
LASSO def ~ ~
S0 S B ] = Go+ 22, @g - S (29)

If the predicted f,*5%° is a good predictor of the realized excess return, rx, ., then

traders’ joint inference problem is crucial to predicting stock returns. I measure the
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predictive power of f#*5° by the R* of an out-of-sample regression

LASSO _ , LASSO
o~ - n,t M, 30
rxl’l,H—l - al’l + Cn . O-LASSO + el’l,H—l ( )
n
where L4550 and oLA559 are the mean and standard deviation of the predictor f-ASSO,

To make sure that both predictors are not capturing the exact same information, I

also run a regression with both predictors on the right-hand side:

AR(1) AR(1) LASSO LASSO
f;l,z — Hn ] % [ nt — Hy
T n n

Xpte1 = &n + l;n : ) + €nr+1 (31)
O_nAR(l) O—%ASSO

The logic here is simple. If the stock-specific information captured by the AR(1)
model and feature-selection information captured by the LASSO model are really
different kinds of information, then the R? of this combined regression will be roughly
equal to the sum of the R?s from Equations (27) and (30).

5.2 Data Sources

I collect 79 different predictive variables at the monthly horizon from January
1990 to December 2010 from a variety of data sources. Monthly returns for NYSE
stocks come from the Wharton Research Data Service (WRDS).

The bulk of the predictors come from Ken French’s website. See http://mba.
tuck.dartmouth.edu/pages/faculty/ken. french/data_library.html for
more detailed variable definitions. I include factors representing the excess returns to
the market portfolio as well as portfolios of small, large, growth, and value stocks as
in Fama and French (1993). I also consider factors representing the excess returns
to medium-term momentum (Jegadeesh and Titman, 1993) as well as to short- and
long-term reversals (Jegadeesh, 1990). In addition, there are factors representing the
excess returns to portfolios of high and low operating profit firms and high and low
real-investment firms. Table 1a houses summary statistics for all of these predictors.

The same data library also contains data on the monthly excess returns to country-
and industry-specific portfolios. I include factors for the following countries: Australia,
Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Hong Kong,

Ireland, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Singapore, Spain,
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Switzerland, Sweden, and United Kingdom. Table 1c houses the summary statistics
for these factors. The absence of many of the country-specific factors prior to January
1990 dictates the starting point for my sample period. Similarly, I include factors for
30 different SIC Code industries. See Table 1d for the relevant descriptive statistics.

I incorporate data on a variety of market-sentiment indicators used in Baker
and Wurgler (2006). These data are all available on Jeff Wurgler’s website: http:
//people.stern.nyu.edu/jwurgler/. The dividend premium originally comes
from Baker and Wurgler (2004), the number and first-day return on IPOs is defined in
Ibbotson, Sindelar, and Ritter (1994), the average monthly turnover of NYSE stocks
comes from the NYSE Factbook, the closed-end-fund discount is detailed in Neal and
Wheatley (1998), and the equity share in new issues is originally outlined in Baker
and Wurgler (2000). The sentiment index is a factor representing the first principal
component of these six sentiment proxies over 1962-2005 time period, where each of
the proxies has first been orthogonalized with respect to a set of macroeconomic
conditions. Table 1b displays the relevant summary statistics.

I also add a variety of other macroeconomic predictors: a recession indicator as
defined by the National Bureau of Economic Research (NBER), factors representing
the U.S. employment growth rate and the U.S. inflation rate from the Bureau of
Economic Analysis (BEA), and a factor denoting the level of the VIX from the
Chicago Board of Options Exchange (CBOE). Table 1b displays the summary statistics
for these variables.

Finally, there are three additional factors. The first two, a time-series momentum
factor (Moskowitz, Ooi, and Pedersen, 2012) and a betting-against-beta factor (Frazzini
and Pedersen, 2014), come from AQR’s data library. See https://www.aqr.com/
library/data-sets for further details about their construction. The third factor
is Pdstor and Stambaugh (2003)’s liquidity-risk factor, which is available from
L ubos Pastor’s website: http://faculty.chicagobooth.edu/lubos.pastor/
research/liq_data_1962_2013.txt. See Table la for descriptive statistics.

5.3 Estimation Results

If real-world traders face a feature-selection problem, then explicitly modeling

this problem using the LASSO should improve out-of-sample return predictability
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Out-of-Sample R? from Different Estimation Techniques

10% —

12.90%

5%

0% =
AR(1) LASSO Both

Figure 2: Average R? from an out-of-sample prediction of 1-month excess returns

using an auto-regression, LASSO, or both. Data: Monthly returns for NYSE-listed

stocks from January 1990 to December 2010. Reads: “Using the LASSO to predict

returns boosts the out-of-sample R? by (9.65 — 3.95)/3.95 ~ 144.3%.”

for each stock. By contrast, if traders do not face a feature-selection problem, then
the LASSO should not provide any additional out-of-sample predictive power. All
the relevant information should be contained in the previous month’s returns. The
estimation results show that using the LASSO dramatically improves out-of-sample
return predictability. Thus, this feature-selection problem appears very important for
real-world traders.

Figure 2 houses the key result: using an estimation strategy that accounts for
traders’ joint inference problem improves the accuracy of out-of-sample predictions.
If you just run a simple AR(1) model using rolling 24-month windows, you get
an out-of-sample R?> = 3.95%; whereas, if you estimate the LASSO on the same
24-month windows, you get an out-of-sample R*> = 9.65%, an improvement of
(9.65 — 3.95)/3.95 = 144%. Moreover, these two estimation techniques are capturing
fundamentally different information. When both the AR(1) and LASSO predictors are
included in the same regression, the resulting R? is 95% of the sum of the R?s from the
separate regressions.

The pattern of factor loadings that the LASSO chooses also supports the idea
that traders face a feature-selection problem. Tables 2a, 2b, 2c, and 2d reveal that, at
most, only a small fraction of all NYSE stocks load each of the 79 different factors at
any given time. There are many factors which are unhelpful for predicting future
stock returns for months on end. For example, Table 2a shows that, while the excess

returns to a momentum strategy predict the future returns of 18% of all NYSE stocks
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in January 2009, momentum is a significant predictor for zero stocks in March 1997.

None of the predictors is a useful indicator for all the stocks all the time. Factors
suddenly lurch into importance and then shrink away. It just is not obvious to traders
ahead of time which factors they should be using to predict returns. This is exactly the

sort of joint inference problem analyzed in the model above.

6 Conclusion

Real-world traders have to simultaneously figure out both which asset features
matter and also how much they matter. This paper develops the asset-pricing
implications of traders’ joint inference problem. Because traders have to simultaneously
answer both ‘Which features?” and ‘How much do they matter?’, the risk of selecting
the wrong subset of features can spill over, warp their perception of asset values, and
distort prices. Thus, feature-selection risk can limit market efficiency even though it
stems from the inherent high-dimensional nature of modern asset markets and not

some cognitive constraint or trading friction.
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A Proofs

Proof (Proposition 2.3). Each of the N asset-specific informed traders knows his
own asset’s true value, v,, and solves the optimization problem below

max E[ (v, — pu) - Y|V ]

Yn
giving the demand coefficient, (1), up to the determination of A:

1
2-1
——
0(1)

Yn = Vn

I use the notation that X[« denotes the measurement matrix X restricted to the
columns K and that a4 denotes the coefficient vector e restricted to the elements K.
Since an oracle has told the market maker which K features have realized a shock, he
can use ordinary least squares to estimate a:

d

-1
ax10Ls = {(X[T‘K]X[m) X[Tq(] } @

Thus, the cross-section of demand gives the market maker a signal about asset
fundamentals

1
P = X & =——-d
YoLs [K1[%],0LS )
which has signal error:
1 K o7
E| = |v-boslhy | = = =—
[N I OLSHZ] N a0

Least squares prediction errors are normally distributed. In the limit as N — oo,
the asset values are normally distributed since shocks, @, are bounded and selected
independently from the same distribution. Using DeGroot (1969) updating to compute
the market maker’s posterior beliefs gives:

K (T%
N Q)2
Var[v,|d] = MY [xo?
K [ 2
N aae T Oy
2
o
Bvid) =55 s = o |
N e TO
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Substituting in (1) = 1/(2 - 1) and simplifying gives the desired result. O

Lemma A.1 (Fano’s Error Inequality, Cover and Thomas (1991)). Suppose x is a
random variable with N outcomes {x, ..., xy}. Lety be a correlated random variable,
Corr[x,y] # 0, and let f(y) be the predicted value of x for some deterministic function
f (). Then, the following inequality holds,

_ M[x, y]
log,(N)

where M[x, y] denotes the mutual entropy between the random variables x and y.

Prob[x = f(y)] > 1 —o(1),

Lemma A.2 (Mutual Information Bound, Cover and Thomas (1991)). Suppose p is a
random variable with N outcomes {py, ..., pn} that represent probability distributions
of x € X. Let X € X be a realization from 1 of the N probability distributions. Then,
the following inequality holds,

I X X
Mip.yl < <5 D KLIp(dD).pr (alS)].
n,n’=1
where KL[p,,, p.v] is the Kullback-Leibler divergence between the distributions p, and
Pw-

Proof (Proposition 3.1). I show that if there exists some fixed constant C such that
N < C- Ky -log(QOn/Ky)

as N — oo, then there does not exist an inference rule ¢ € ® such that FSE[¢] — 0.
The proof proceeds in 6 steps:

1. Define variables. Let S = (%) denote the number of feature subsets of size K
and index each of these subsets with K for s = 1,2,...,S. It is sufficient to
consider the case where @, = anmi, for all g € K since this is easiest case. If
there is no selection rule ¢ that can identify the correct subset K when all of the
coeflicients are fixed at ay,;,, then there can be none when the coefficients are
variable. Each subset is then associated with a distribution, p;, given by

Ds = Normal(amin : X[%Y]]-’ I)

for s = 1,2,...,S where X[K|] denotes the observed measurement matrix
restricted to the columns %K, 1 denotes a (K X 1)-dimensional vector of 1s, and
I denotes the (K X K)-dimensional identity matrix.
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2. Apply information inequalities. Picking the right subset, s € {1,...,S5}, then
amounts to picking the right generating distribution. Fano’s inequality says that
Mp. d|X]

FSE[¢] = Prob[K = ¢(d,X)] > 1 — ————— —o(1)
log,(S)

I want to find conditions under which the right-hand side of this inequality is

greater than 0. To do this, I need to characterize M[p, d|X] which can be upper
bounded:

S

! : :
Mip.diX] < < - ) KLIp(d'd. X).p.(d'ld. X)]

s,8’'=1

3. Use functional form. The optimal selection rule searches over all S feature
subsets and tries to solve the program

...........

Plugging in the form of the optimization problem to characterize the Kullback-
Leibler divergence and rearranging then gives

FSE[¢] = Prob[K = ¢(d, X)]

L2' S'— min'Xq(s _Xq(s/ ]-2
1 B o UK - XIKDUE)
log,(S)

In order for FSE[¢] > 0, it has to be the case that as N — oo we have that

1 Zisrzl llmin - (X[%K] = X[Ke D15
2.8? log,(S)

1>

4. Characterize error distribution. For any pair of subsets (K, K ) define the
random variable as

hs,s’ = ”a'min : (X[(](s] - X[(](s’]) 1”%

Because assets have feature exposures, x,, 4 X Normal(0,1), hs ¢ follows a )(12\,
distribution,

hs,s’ ~2- a/rznin : (K - |7(s N 7(s’l) X[ZV
where |K; N K| denotes the size of the set difference between the subsets K
and K. For example, if there are K = 4 shocked features and K = {1, 2,5, 9}
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while Ky = {1,3,5,9}, then |K; N K| = 1.

5. Bound mass in tail. Using the tail bound for a y3, distribution, we see that

1
Prob E-th/ 24-aﬁlin-K-N <1/2

s£S’
Thus, at least half of the S different subsets obey the bound below:

min

1 25 o llmin - (XIKG] - XIK DI . 4.0 -K-N
2.82 log(S) = logy(S)

6. Formulate key inequality. Thus, as long as
4.2 -K-N
log,(S)

holds, the error rate will remain bounded away from 0 implying that

1>

4.0% K

min

N>( ‘ )xlogz(S)

is necessary for FSE[¢] — 0. The multiplier (4 - %, - K)~! is where the fixed

min
constant C comes from in the result, so it is obvious that the constant will
depend on the way that a,;, and K scale as the market grows large. To make the

formula above match, simply recall that:

O

Lemma A.3 (Bound on Signal Error, Candes and Plan (2009)). If N > N*(Q, K),
then the LASSO estimate, & sso, from the program in equation (20) using the tuning

parametery = 2 - (0,/6) - /2 - 1og(Q) obeys the inequality,

K -log(Q) o2 1

6
> 1- -
N 92)] SO o o lon©)

with numerical constant C = 4 - (1 + \5).

1 8
Prob | - |1 Xa - Xal; < C* x (

Proof (Proposition 4.2). Just as in Proposition 2.3, each of the N asset-specific

31



informed traders knows his own asset’s true value, v,, and solves

maXE[(Vn_pn)'ynlvn]

Yn
giving the demand coefficient, 6(1), up to the determination of A:
Yn = Va2 ) = v, - 0()

In the limit as N — oo, the asset values are normally distributed since shocks, a,,
are bounded and selected independently from the same distribution. However, now the
cross-section of aggregate demand gives a signal about each asset’s fundamental value
with mean v and variance given in Lemma A.3.

Using DeGroot (1969) updating to compute the market maker’s posterior beliefs
gives:

c? . Klog@) | o2

Var[v,|d] = - (Q)W —|x o2
-lo o2
O'% +C?. 1\% . W
1 o
E[v,|d] = e ( K.‘I}Og(Q) 2 )'d
0'\2) +C?. — W
1
Noting that 8(1) = 1/(2 - ) then gives the desired result after simplifying. O
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Summary Statistics for Market Factors

Avg Med StD

Value-Weighted Market ittt (0.5 1.1 4.5
Small Stocks — wwwemspligpeeapr 1.1 1.7 6.2

Large Stocks  fkeiitpiigroeyi ()8 1.2 44

Growth Stocks ~ fbeemigemyt 0.8 1.1 4.6

Value Stocks et 0.9 1.6 4.8

Low Op. Profit Stocks ~ #wijivesaid 0.6 1.4 5.5
High Op. Profit Stocks ~ fewtrphigemct 0.9 1.3 4.2
Low Investment Stocks it 09 1.5 4.3
High Investment Stocks — e (.8 1.3 54
Low E/P Stocks fiewmrmypt 0.8 1.1 4.7

High E/P Stocks ity 11 1.6 4.6
Momentum vt (0.6 0.8 5.3

Short-Term Reversal — werntfflencaes 0.3 0.2 3.8
Long-Term Reversal — whspibbtvndty 0.4 0.3 2.6
Time-Series Momentum — iwepbthtth 1.7 1.5 7.9
Betting Against Beta  wwwespdffrengs - 0.8 1.0 3.2

Liquidity Factor weamiipmamgn 0.6 0. 4.0

Min Max
-17.2 10.8
=215 24.2
-164 11.6
-154 14.2
-22.1 16.6
=214 125
-154 132
-16.1 10.5
—-18.5 13.6
-163 134
-18.5 12.5
-34.7 184
-14.5 16.2

=70 11.1
-174 244
-10.5 10.7
-10.1 21.0

Table 1a: Monthly excess return on market factors from January 1990 to December
2010. Sources: Ken French’s data library, AQR’s data library, and L ubos Péstor’s

website.

Summary Statistics for Sentiment and Macro Variables

Avg Med StD
Sentiment Index ...~ A .. 0.1 0 0.5
Dividend Premium =~~~/ —-69 =72 9.8
Number of [IPOs w0 . 27.4 215 22
Return on IPOs .M. 179 13.7 19.6
Turnover ..ty 0.8 0.8 0.3
Closed-End-Fund Discount ~""“tm.J~ 6.1 6.2 4.5
Equity Share in New Issues  wwwsaimewode 0.3 2.1 57.9
Recession Indicator . 0.1 0 0.3
Employment Growth ™% 4 (0.1 0.1 0.2
Inflation Rate ~ “~r—swioiiie- (0.2 0.2 0.3

VIX oo 204 192 8

Min Max
-0.9 2.5
-50.2 17.1
0 106
-19.9 116.2
0.4 1.7
-6 18.2
-246.3 204.6
0 1
-0.6 0.4
-1.9 1.2
10.8 62.6

Table 1b: Monthly values for a variety of sentiment and macroeconomic variables
from January 1990 to December 2010. Source: Jeffrey Wurgler’s website, NBER,

BEA, and CBOE.
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Summary Statistics for Country-Specific Factors

Avg Med StD Min Max

Austria et (08 1.0 7.0 =344 20.0
Australia el 11 1.0 6.0 =277 173
Belgium  #wriwibertn 08 1.0 5.6 -30.8 16.7
Canada  wwwemprpevnenhe 1.0 1.4 5.6 =269 21.5
Denmark  #sebromentt 1.0 1.4 5.7 -=25.6 18.2
Finland  wbwespenpe 1.3 1.0 9.1  -29.0 30.8
France iyt 0.8 1.2 59 -21.6 15.0
Germany e 0.8 1.2 6.3 =233 22.0
Hongkong  wibwslwwneape 1.4 1.2 7.6 —-28.6 32.2

Italy — wibtibpprhy 0.6 0.8 7.2 =237 21.2

Japan iy 0.1 0.0 64 —-18.6 259
Netherlands e 10 1.3 5.9  -30.1 17.1

New Zealand  weiufueesryd 0.6 09 64 -19.0 15.6
Norway  tavdespigesehpi 11 1.3 7.5 -=-31.0 19.5
Singapore = wbenifppgbe 1.0 1.3 7.4 =283 29.3

Spain  twbeitpbipeapy 09 1.0 6.7 -22.8 21.1
Sweden  jbswbypsht 1.2 1.5 7.6 -27.6 25.2

Switzerland ~ hrewtaienntd 1.0 1.3 48 —-14.7 14.8
United Kingdom  Mkwsimienty 0.8 0.8 49 -204 14.3

Table 1c: Monthly excess return on value-weighted country-specific portfolios from
January 1990 to December 2010. Source: Ken French’s data library.
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Summary Statistics for Industry-Specific Factors
Avg Med StD Min Max
Automobiles ek 0.8 1.0 8.0 -364 49.6

Beer  fmshiisirmr 1.0 1.3 52 -198 164
Books sty 0.5 0.3 5.7 =265 33.1

Business Equipment et 1.1 1.3 83 -31.8 25.1
Chemicals  swwembiiwmeshe 0.9 1.2 57 =209 22.1

Clothes  fiwmiplypesaid 1.0 1.6 6.7 =22.1 25.1

Coal  wwmmflilipnmnipe 2.0 1.4  11.8 -37.9 44.0

Construction il 0.8 1.2 6.1 -28.2 233
Electrical Equipment  sa-sbgarneipt 1.3 1.1 6.5 -246 232
Fabricated Products — w-vmfimmesht 1.0 1.5 6.8 -29.9 20.8
Financials  ivowisgeegli 0.9 1.3 5.8 =221 17.0

Food  fhpemmidpvrmer 0.9 1.1 42 -12.1 157

Gaming  weespigerge 1.0 1.3 7.1 =29.7 345

Healthcare  uebtrimempes 0.9 1.1 46 -123 165
Household  iwwsprarsere 0.9 1.2 45 -14.3 185
Non-Auto Vehicles — fwvtfifureyl 12 1.8 6.2 -241 17.1
Non-Coal Mining  wwwissacetenpe 1.0 1.2 81 =345 356
Oil and Gas ~ wwwmbsitpegy 1.0 0.7 53 -169 19.1

Other twemiplyeupf 03 0.6 6.0 -21.3 19.8

Paper wwieywoge 0.8 1.0 5.1 —-18.5 21.0

Services vy 1.1 1.8 69 -19.3 238
Restaurants e 0.9 1.3 52 -14.8 16.0

Retail  Mwwwiiiisyprngt 0.9 0.9 53 -146 143

Steel  wwebilypomeafr 0.9 0.9 8.6 -33.0 30.7

72 =249 325
55 -162 213

Tabacco — mipemybegvornes 1.2

Telecom  fbwestpipmsgr 0.6

Transportation — fewesiispinpalt 0.9 53 -=16.7 14.5

Utilities vt 0.8 . 42 -12.77 11.7
Wholesale  itemjbpemgp (0.7 1. 48 -21.1 152

Table 1d: Monthly excess return on value-weighted industry-specific portfolios from
January 1990 to December 2010. Source: Ken French’s data library.

s = D
SR Yl Sl
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Fraction of Stocks Loading on Each Market Factor

Value-Weighted Market
Small Stocks

Large Stocks

Growth Stocks

Value Stocks

Low Op. Profit Stocks
High Op. Profit Stocks
Low Investment Stocks
High Investment Stocks
Low E/P Stocks

High E/P Stocks
Momentum

Short-Term Reversal
Long-Term Reversal
Time-Series Momentum
Betting Against Beta
Liquidity Factor

[ S _‘
_—

‘92 ‘95 ‘00 ‘05 ‘10

Table 2a: Fraction of NYSE stocks each month that have non-zero loadings on each
market factor when estimated using the LASSO in Equation (28). y-axis ranges from

0% to 25%.
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Fraction of Stocks Loading on Each Sentiment and Macro Variable

Sentiment Index

Dividend Premium
Number of IPOs

Return on IPOs

Turnover
Closed-End-Fund Discount
Equity Share in New Issues
Recession Indicator
Employment Growth
Inflation Rate

VIX

P

[r—

92 ‘95 ‘00 ‘05 ‘10

Table 2b: Fraction of NYSE stocks each month that have non-zero loadings on
each sentiment and macroeconomic variarable when estimated using the LASSO in
Equation (28). y-axis ranges from 0% to 25%.
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Fraction of Stocks LLoading on Each Country-Specific Factor

Austria
Australia
Belgium
Canada
Denmark
Finland
France
Germany
Hongkong
Italy

Japan
Netherlands
New Zealand
Norway
Singapore
Spain
Sweden
Switzerland
United Kingdom

92 ‘95 ‘00 ‘05 ‘10

Table 2c: Fraction of NYSE stocks each month that have non-zero loadings on each
country-specific factor when estimated using the LASSO in Equation (28). y-axis
ranges from 0% to 25%.
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Fraction of Stocks Loading on Each Industry-Specific Factor

Automobiles —-— —

_—— |
Beer

Books o Baanm

Business Equipment —
Chemicals
Clothes -
Coal
Construction
Electrical Equipment
Fabricated Products — e —

|l

Financials — atnenn,
Food
Gaming .
Healthcare —
Household -
Non-Auto Vehicles
Non-Coal Mining —
Oil and Gas e,
Other
Paper
Services
Restaurants —_—
Retail —
Steel —
Tabacco
Telecom
Textiles - . -
Transportation
Utilities e
Wholesale - PO
‘92 ‘95 ‘00 ‘05 ‘10
Table 2d: Fraction of NYSE stocks each month that have non-zero loadings on each
industry-specific factor when estimated using the LASSO in Equation (28). y-axis
ranges from 0% to 25%.
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