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Abstract

The anomaly zoo has caused many to question whether researchers are using the right tests of
statistical significance. We point out that even if researchers are using the right tests, they
will still draw the wrong conclusions from their econometric analyses if they start out with the
wrong priors—i.e., if they start out with incorrect beliefs about the ex ante probability of
encountering a tradable anomaly. We call this ex ante probability the ‘anomaly base rate’. We
propose a way to estimate this quantity by combining two key insights: #1) Empirical-Bayes
methods capture the implicit process by which researchers form priors about the likelihood
that a new variable is a tradable anomaly based on their past experience with other variables
in the anomaly zoo. #2) Under certain conditions, a one-to-one mapping exists between these
prior beliefs and the best-fit tuning parameter in a penalized regression. The anomaly base
rate varies substantially over time, and we study trading-strategy performance to verify our
estimation results. If you trade on two variables with similar one-month-ahead return
forecasts in different base-rate regimes (low vs. high), the variable in the low base-rate regime
consistently underperforms the otherwise identical variable in the high base-rate regime.
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1 Introduction
Imagine you are a financial economist sitting down at your weekly research seminar. Today’s speaker
has regressed each stock’s excess return, Rn, on lagged values of a new variable, Xn:

Rn = µ̂+ β̂ ·Xn + ε̂n for stocks n = 1, . . . , (N + 1). (1)

µ̂ is the mean excess return in the current month, β̂ is the estimated slope coefficient, and ε̂n is the
residual for the nth stock. Before running this regression, the speaker standardized Xn to have zero
mean and unit variance in the cross-section each period. And, on the current slide, he is reporting a
positive estimated slope coefficient, β̂ > 0, that is statistically significant at the 1% level.

Predictive regressions and trading-strategy returns are two sides of the same coin (Fama, 1976).
So, the β̂ in Equation (1) can be viewed as the realized return to a zero-cost portfolio that is long
stocks with high Xn values last month and short stocks with low Xn values last month:

β̂
def= Ĉov[Rn, Xn]

V̂ar[Xn]
= 1

N
·∑n (Rn − µ̂) · (Xn − 0). (2)

Thus, an estimated β̂ > 0 implies not only that high-Xn stocks last month, (Xn− 0) > 0, tended to
have high excess returns this month, (Rn − µ̂) > 0, but also that it was profitable to trade on Xn

in the past. If you had bought high-Xn stocks last month, then you would have earned high returns
this month. Since investors should exploit and thereby eliminate such an arbitrage opportunity, this
finding might suggest a gap in our economic understanding of how financial markets work.

However, the speaker’s estimated slope coefficient is just that. . . an estimate. An estimated
β̂ > 0 implies that it was profitable to trade on Xn, but you want to know whether it will be
profitable to trade on Xn going forward. And, this change in verb tense makes a world of
difference since “many of the results being published fail to hold up in the future” (Harvey, 2017).
Predictability often turns out to be a decidedly in-sample phenomenon (McLean and Pontiff, 2016;
Linnainmaa and Roberts, 2018). Xn still might not represent a tradable anomaly even if the
seminar speaker estimates a large, positive, and statistically significant slope coefficient. His results
might just be a fluke, a chance event not warranting any change in our economic understanding.

Your task as an audience member is to figure out Pr[ anom | signif ], the probability that Xn is
a tradable anomaly given the speaker’s statistically significant results. Bayes’ rule tells you how:

Pr[ anom | signif ] =
(

Pr[ signif | anom ]
Pr[ signif ]

)
× Pr[ anom ]. (3)

Multiply the ex ante probability that Xn is a tradable anomaly, Pr[ anom ], times the relative
increase in the base rate due to the speaker’s statistically significant results,

(
Pr[ signif | anom ]

Pr[ signif ]

)
.
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The current literature on cross-sectional predictability is primarily concerned with how data
mining distorts the first term on the right-hand side of Equation (3),

(
Pr[ signif | anom ]

Pr[ signif ]

)
. Computing

this ‘Bayes factor’ requires knowing the correct unconditional probability of a significant result,
Pr[ signif ]. And, knowing the correct unconditional probability requires using the right p-value:

Pr[ signif ] = Pr[ signif | anom ]× Pr[ anom ] + Pr[ signif | ¬anom ]︸ ︷︷ ︸
=p-value

×Pr[¬anom ], (4)

where, ¬ denotes the logical not symbol. Earlier we said that the seminar speaker reported an
estimated slope coefficient, β̂ > 0, that was statistically significant at the 1% level—i.e., a
p-value = 0.01 and a t-statistic = 2.54. A p-value = 0.01 means that there is only a 1/100 chance
of a single variable having such an estimate by pure chance under the null hypothesis of no
predictability. But, if the seminar speaker also ran regressions involving 99 other variables, then on
average you would expect one of these 100 regressions to produce a p-value = 0.01. Thus, by
ignoring the effects of data mining, financial economists tend to think that significant results are less
common than they actually are. And, as a result, they tend to over-react when they see one.

Using a higher t-statistic cutoff (or equivalently, a lower p-value cutoff) when assessing
statistical significance is one way of correcting this error (Harvey et al., 2016). Financial economists
can and should be doing this. But, it is also worth remembering that the Bayes factor is not the
only term on the right-hand side of Equation (3). Someone who enters the seminar room with
wildly inaccurate priors, Pr[ anom ], is going to draw the wrong conclusions from the speaker’s
results even if they correct their Bayes factor for data mining. And, it seems like some of your
colleagues must have entered the seminar room today with wildly inaccurate priors. Before the talk
even started, you already knew who would leave the room skeptical. You could also point to a group
of your colleagues known to be much more receptive to evidence of cross-sectional predictability.
Regardless of where you stand, it is clear that both priors cannot be right. We are not the first to
point out the importance of prior beliefs in asset pricing (Shanken, 1987; Harvey and Zhou, 1990).
But, the current financial-economics literature gives no guidance about which priors to use.

So, how did you estimate an anomaly base rate for use in today’s seminar? We recognize that
there is a whiff of paradox about the idea of estimating one’s priors. But, the notion is not
completely absurd. Penalized-regression procedures such as Ridge (Hoerl and Kennard, 1970) can be
viewed as something like this when they solve the optimization problem below:

min
β

{
1
N
·∑n

(
Rn − µ̂− β ·Xn

)2
+ λ · β2

}
. (5)

λ ≥ 0 is called the ‘tuning parameter’. And, it is well-known that this optimization problem has a
clear Bayesian interpretation when the true slope coefficients are drawn from the appropriate

2



distribution. For Ridge, the appropriate distribution is β?i ∼ Normal[0, σ2]. Under these conditions,
the Ridge’s success can be viewed as the result of incorporating one’s prior beliefs about σ2, the
variance of the market conditions leading to predictability (Pástor, 2000; DeMiguel et al., 2009;
Kozak et al., 2018b).

In this simple setup, the best-fit tuning parameter (λ) is inversely related to the variance of
one’s prior beliefs about the market conditions for predictability (σ2). This mathematical connection
between the best-fit tuning parameter and prior beliefs is a promising avenue, which suggests it
might be possible to estimate this prior using a penalized-regression framework. Unfortunately, the
economic meaning of this connection is not entirely clear. Suppose λ is inversely related to the
variance of market conditions for return predictability. There is no general theory of these market
conditions. The variables that seem to predict the cross-section of expected returns are constructed
using a wide variety of different data sets and typically have little to do with one another
economically (Lewellen et al., 2010). So, how should we interpret the associated prior variance, σ2?
What exactly are the corresponding prior beliefs beliefs about?

With these difficulties in mind, this paper proposes a way to estimate the prevailing anomaly
base rate. Here is the logic. The existence of the anomaly zoo tells us that research practices matter.
So, maybe your prior beliefs walking into the seminar room today had more to do with your
first-hand knowledge of current research practices than with the market conditions leading to
predictability. After all, as a well-trained financial economist, you know the econometric tips and
tricks that other well-trained financial economists use. You yourself frequently employ these same
techniques. So, your past experience with other variables in the anomaly zoo contains information
about the rate at which these techniques produce tradable anomalies rather than spurious predictors.

When reframed this way, the idea of estimating one’s priors no longer seems quite so paradoxical.
Financial economists are constantly evaluating their current research practices based on how well
published results hold up out of sample. This is an integral part of doing good research, and it is a
process that is captured by empirical-Bayes methods (Robbins, 1956; Efron and Morris, 1972, 1973,
1975). “The essential empirical-Bayes task [is] learning an appropriate prior distribution from
ongoing statistical experience rather than knowing it by assumption (Efron, 2013).” Or, in the words
of Efron and Hastie (2016, p. 77), “large data sets of parallel situations carry within them their own
Bayesian information” about the appropriate prior. And, what is the anomaly zoo if not a large
data set of many parallel situations, one for each variable in the published literature i = 1, . . . , I
that seems to predict the cross-section of expected returns?

To exploit this reframing, we model the true predictive strength of each of variable in the
anomaly zoo as being drawn from a common normal distribution:

β?i
iid∼ Normal[0, σ2] for each variable i = 1, . . . , I. (6)
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Figure 1. Forecasted v̄2
t . Top Panel: Average forecasted prior variance each year. For

each variable i = 1, . . . , It first introduced prior to month t, we estimate the in-sample
parameter v̂2

i,t′ for all months t′ < t via Proposition 2.2. We then make a one-month-ahead
forecast for month t, v̄2

i,t, by fitting an AR(3) model in months {t− 60, . . . , t− 1}. Finally, we
average the forecasts for all past variables to compute v̄2

t . Bottom Panel: Number of new
variables published in the academic literature each year, ∆It. Sample: June 1978 to June 2015.

The idea here is to parameterize the efficacy of current research practices by the variance of this
distribution. If σ2 = 0, current research practices only produce spurious predictors. As σ2 increases,
it becomes more likely that a randomly selected variable in the anomaly zoo is a tradable anomaly.
The zero-mean assumption reflects the idea that some variables positively predict future returns
while others negatively predict future returns—e.g., medium-term momentum vs. short-term reversal.
We provide a more detailed discussion of the assumptions involved in Equation (6) below.

Once we view σ2 as related to research methods and not market conditions, this quantity has a
clear economic meaning. It then makes sense to invert the best-fit Ridge penalty, λ, to estimate the
anomaly base rate. We can use empirical-Bayes logic to capture the way in which researchers
combine their past experiences with other variables to inform their priors. We apply this approach
to monthly data on 85 different variables in the anomaly zoo. Let It ≤ 85 denote the number of
variables published prior to month t. Each month, we run separate univariate Ridge regressions of
excess returns over the risk-free rate on lagged values of each variable i = 1, . . . , It. Then, we invert
the best-fit tuning parameter from each of these regressions to produce variable-specific estimates
for σ2 in each month t, which we call v̂2

i,t. We use these variable-specific estimates to construct a
market-wide base rate by making a one-month-ahead forecast of each variable-specific estimate and
then averaging these out-of-sample forecasts to find the aggregate prior variance, v̄2

t . This quantity
represents our estimate for the ex ante probability that the next predictor will be a tradable
anomaly, that is, σ2.

The top panel of Figure 1 shows how this prior variance has evolved over time. Note that v̄2
t is

not just counting the number of variables recently added to the academic literature. The bottom
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panel of Figure 1 shows that the anomaly base rate can be low at times when lots of new variables
are being ‘discovered’ if these new variables tend to have poor subsequent performance—i.e., if they
tend to be spurious predictors. v̄2

t is also not just a stand-in for return volatility or related variables
as we show below. v̄2

t is measuring the strength of predictors in the anomaly zoo as we argue in
equation (6). Finally, recall that our statistical approach is agnostic about the market conditions
that lead to cross-sectional return predictability. So, the variables we are calling ‘tradable anomalies’
do not necessarily have to be pricing errors. We are using this term as a convenient short-hand since
it reflects the original motivation for looking for such variables as described in Equation (2).

A natural intuition is that the anomaly base rate should be steadily declining over time. And, if
there were a fixed number of tradable anomalies to discover and financial economists were
repeatedly using the exact same empirical methods to look for them in the exact same data sets,
then this is exactly what we would find. In that world, a researcher who entered the game early
would be more likely to discover and publish a tradable anomaly (high base rate). Whereas, later
researchers would face a lower anomaly base rate since most of the low-hanging fruit would have
already been published. However, this intuition does not take into account the fact that empirical
methods and data sets evolve over time. Groups of new candidate predictors become available;
growth in computing power displays jumps; new statistical methods get deployed. These sorts of
changes lead to time-series variation in the anomaly base rate.1

This paper offers a practical means of estimating the anomaly base rate and its evolution over
time. The anomaly zoo contains a few tradable anomalies and many more spurious predictors. Our
core economic insight is that a researcher’s past experience with these variables must contain
information about the efficacy of his research practices. So, in the absence of an overarching theory
for cross-sectional predictability, a researcher likely uses this information to inform the prior beliefs
he uses when evaluating new variables. We have deliberately used a highly stylized statistical setup.
But, numerical simulations show our approach is readily extensible. By introducing a clear and
simple way of estimating the anomaly base rate, our hope is that future research can shed more
light on the drivers of this important economic object.

We show via a purely out-of-sample trading-strategy performance shows that, in spite of its
transparent simplicity, our statistical approach still produces actionable estimates of the anomaly
base rate. We consider trading on two variables in different base-rate regimes (one low, the other
high) with the same one-month-ahead return forecast. Theory suggests that the variable in the low
base-rate regime should under-perform the otherwise identical variable in the high base-rate regime.
And, this is exactly what we find in the data. Let directioni be the direction of the ith variable.
e.g., directioni = +1 for medium-term momentum while directioni = −1 for short-term reversals.
And, let β̄i,t be the one-month-ahead return forecast for the ith variable.
1We would like to thank an anonymous referee for helping to develop this intuition more clearly.
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We start with a benchmark strategy that holds all variables in the anomaly zoo that have
β̄i,t · directioni > 1% in month t. The 1%-per-month threshold captures the idea, to be a tradable
anomaly, a variable must generate enough predictability to cover implementation costs. The specific
threshold level is not important, and our results are robust to using a wide range of thresholds.
Rather, the key thing is that, when the prior variance implied by all other variables i′ 6= i is
small, v̄2

¬i,t
def= 1

It−1 ·
∑
i′ 6=i v̄

2
i′,t ≈ 0, you should expect the ith variable to have a small amount of

predictability too, β?i,t ≈ 0. As a result, you should be less willing to trade on the ith variable if
β̄i,t · directioni � threshold. Following this logic, our base-rate-adjusted strategy only holds
variables i = 1, . . . , It that still have return forecasts in excess of 1% after adjusting for v̄2

¬i,t.
This base-rate-adjusted strategy delivers net excess returns of 0.74% per month and has an

annualized out-of-sample Sharpe ratio of 0.57. The strategy works by discarding variables in the
benchmark strategy that are implausibly strong predictors given the prevailing anomaly base rate.
And, we find that an alternative strategy which only invests in these discarded variables has net
returns of just 0.18% per month and an annualized out-of-sample Sharpe ratio of 0.11. This drop in
performance persists even when we control for the magnitude and standard error of each variable’s
forecasted β̄i,t to control for estimating uncertainty. In other words, we find that trading on the
same one-month-ahead return forecast is less profitable in months when the anomaly base rate is
low just as predicted by the theory. We also verify that the base-rate-adjusted strategy is also no
more likely to hold high-turnover predictors.

1.1 Related Literature
This paper connects to three strands of the literature on cross-sectional predictability.

Data Mining. There is a large financial-econometrics literature on data mining (Lo and
MacKinlay, 1990; Ferson et al., 1999; Sullivan et al., 1999; White, 2000; Barras et al., 2010;
Bajgrowicz and Scaillet, 2012; McLean and Pontiff, 2016; Harvey et al., 2016; Yan and Zheng, 2017;
Harvey and Liu, 2018a,b,c; Linnainmaa and Roberts, 2018). We want to emphasize that, while
clearly related to the topic, this is not a paper about data mining. We are doing something different.
We are proposing a method of estimating the anomaly base rate, Pr[ anom ]. In fact, our analysis
specifically takes the Bayes factor,

(
Pr[ signif | anom ]

Pr[ signif ]

)
, as given. You should use the many excellent

papers listed above to adjust the Bayes factor for data mining when interpreting a seminar speaker’s
results. Then, you should apply this data-mining adjusted Bayes factor to the prevailing anomaly
base rate, which we show how to estimate in this paper.

Factor Structure. Even if there are many statistically significant predictors, it still might be
possible to summarize the information in all these variables using a few well-chosen factors. Papers
on the factor structure of predictors try to simplify investors’ lives by collapsing the anomaly zoo
down into a few manageable variables. Ideally, once you condition on these variables, there would be
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no incremental value in considering any other variables when forecasting returns. Researchers
typically try to accomplish this goal using some form of principal-component analysis (Kelly et al.,
2017; Green et al., 2017; Kelly et al., 2018; Lettau and Pelger, 2018).

Penalized Regressions. Many recent papers have used penalized-regression procedures to
solve asset-pricing problems (Pástor, 2000; DeMiguel et al., 2009; Bryzgalova, 2017; Feng et al.,
2017; Freyberger et al., 2017; Ledoit and Wolf, 2017; Chinco et al., 2018; Kozak et al., 2018b). We
are using these same techniques with an entirely different goal in mind: estimating the anomaly base
rate. Here is the key distinction. If there were only a handful of variables to choose from, then these
earlier papers would not need to use a penalized regression. By contrast, estimating the correct
anomaly base rate is important regardless of the size of the anomaly zoo. To our knowledge, this is
the first instance where insights from machine learning are being used to shape our understanding of
a more fundamental asset-pricing problem, a problem that exists even in a low-dimensional setting.

2 Statistical Approach
Let us return to our motivating example. Imagine you are a financial economist sitting at your
weekly research seminar. The speaker is showing evidence that it was profitable to trade on a new
variable, Xn. You want to figure out the probability of Xn being a tradable anomaly going forward.
To do this, you need to start out with the anomaly base rate. Then, you need to update this prior
belief based on the speaker’s results. Your financial-econometrics training tells you how to do the
updating. This section describes a statistical approach for estimating the anomaly base rate.

2.1 Inference Problem
We begin by defining the inference problem you face in greater detail. What precisely is the anomaly
base rate? And, what does it mean to learn about this quantity from past experience?

Data-Generating Process. Suppose there are (N +1) stocks indexed by n = 1, . . . , (N +1).
Let Rn denote the excess return of the nth stock in the current month. Each stock’s excess return
this month is related to the lagged value of the ith variable in the previous month, Xn,i:

Rn = µ? + β?i ·Xn,i + ε?n,i for each variable i = 1, . . . , I. (7)

µ? is the average excess return in the current month, β?i is the true slope coefficient associated with
the ith variable, and ε?n,i

iid∼ Normal[0, N · se2
i ] is the idiosyncratic shock for the nth stock for the

ith variable. In other words, ε?n,i represents the portion of the nth stock’s excess return that is not
explained by the ith variable. This residual might come from idiosyncratic shocks that are
fundamentally random or represent the effects of other variables i′ 6= i.

We normalize the lagged values of each variable to have zero mean and unit variance in the
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cross-section each month: 1
N+1 ·

∑
nXn,i = 0 and 1

N
·∑n (Xn,i − 0)2 = 1. This normalization

is done period-by-period for each variable, does not involve any future information, and
hence it does not affect investability. All it does is ensure that in-sample estimates of β̂i are
comparable across variables. Consider the following example to see why this is important.
Suppose variable 1 corresponds to a portfolio that is long/short the top/bottom deciles while
variable 2 corresponds to a portfolio that is long/short the top/bottom quintiles. Variable 1 will
have variance V̂ar[Xn,1] = 1

10 · (+1)2 + 1
10 · (−1)2 = 1/5; whereas, variable 2 will have variance

V̂ar[Xn,2] = 1
5 · (+1)2 + 1

5 · (−1)2 = 2/5. Thus, since β̂i def= Ĉov[Rn, Xn,i]
V̂ar[Xn,i]

, we would expect that

β̂1 > β̂2 even if both variables have equal predictive power, V̂ar[Xn,1] = 1/5 < 2/5 = V̂ar[Xn,2].

Tradable Anomalies. We say that the ith variable is a tradable anomaly if the magnitude
of its true predictive power exceeds some minimum performance threshold:

anomi
def= 1

[
|β?i | > threshold

]
for threshold ≥ 0. (8)

You can think about this minimum performance threshold as coming from trading costs (Novy-Marx
and Velikov, 2015). Or, you can think about it more broadly as any form of implementation costs. If
you are running a trading desk, then how strong does a predictor need to be before you redeploy
scarce resources to trade on it? In our empirical analysis, we will typically set threshold = 1% per
month for a trading strategy that is long/short the top/bottom deciles. However, we show in the
online appendix that using a threshold ∈ [0.5%, 1.5%] yields qualitatively similar results.

We take the absolute value of the true slope coefficient in Equation (8) because the sign of the
β?i associated with a long-short strategy is arbitrary. Fama and French (1993) could just as easily
have defined their HML factor using market-to-book rather than book-to-market ratios. This
alternative choice would have flipped the sign of the associated slope coefficient but left everything
else about the authors’ analysis unchanged. Contrarian strategies, such as the long-term reversals
(De Bondt and Thaler, 1985), will have β?i < 0. What really matters is the magnitude of β?i .

The statistical approach we describe in this section is agnostic about the market conditions
leading to cross-sectional return predictability. So, although we will refer to strong predictors as
tradable anomalies, their predictability does not necessarily have to be the result of a pricing error
(Kozak et al., 2018a). Nevertheless, we use the term ‘tradable anomaly’ rather than ‘sufficiently
strong predictor’ because we feel it captures the motivation behind researchers’ interest in
cross-sectional predictability as we outline in the introduction.

Research Practices. There is no single unified explanation for the origins of cross-sectional
predictability. The variables that seem to predict the cross-section of expected returns are all
quite different. Cross-sectional predictability might be the result of any number of different
limits-to-arbitrage models (Barberis and Thaler, 2003; Gromb and Vayanos, 2010). There is no
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shortage of risk-based explanations to choose from either (Fama and French, 1996). And, different
variables often use entirely different data sources. Some variables only involve past market data (e.g.,
medium-term momentum; Jegadeesh and Titman, 1993). Others use only accounting data (e.g.,
investment growth; Titman et al., 2004). Why would there be a single economic explanation for the
predictability associated with both medium-term momentum and investment growth? The only
common theme connecting these two variables is Sheridan Titman.

In the absence of a general theory for the origins of cross-sectional predictability, your prior
beliefs about the likelihood of a tradable anomaly likely have more to do with your first-hand
knowledge of current research practices. Even if the economic rationales for medium-term
momentum and investment growth are completely different, you know that both variables were
discovered by financial economists using a shared set of research practices. We have all attended the
same PhD programs. We have taken the same courses. We have all been trained by the same
advisers. We have all been given access to the same data sources. While computing power has grown
over time, at any one point in time all researchers have access to similar amounts of processing
power. Thus, while some researchers are better at searching for new variables than others,
everyone’s discovery process is constrained by the same inputs.

We use a statistical model for the anomaly-discovery process to capture this commonality in
research practices. Specifically, we assume that the strength of each variable is drawn from a
common normal distribution as described in Equation (6). The key assumption embedded in this
equation is that the efficacy of these research practices can be encapsulated by a single parameter
σ2, which governs the range of predictability that financial economists discover. A larger value of σ2

means that researchers are more likely to discover strong predictors. It is not essential to assume
normality or independence across variables as we show in Section 2.3 below. The mean-zero
assumption is also not crucial as we verify using numerical analysis in Section 2.3 as well. We make
these simplifying assumptions for ease of exposition. Our main goals are highlighting the importance
of the anomaly base rate and proposing a simple way to estimate this economic object.

Inference Problem. If the strength of the ith variable is drawn as in Equation (6), then the
parameter σ2 controls the typical size of cross-sectional predictability. This assumption implies that
calibrating your expectations for what today’s seminar speaker will say during the next hour is
tantamount to learning about the prevailing value for σ2.

Proposition 2.1 (Inference Problem). Suppose the true slope coefficients are drawn as in
Equation (6), excess returns are generated by the process in Equation (7), and there exists some
minimum performance threshold as in Equation (8), then the anomaly base rate is given by

Pr[ anomi ] = 2 · Φ[− threshold/σ ], (9)
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where Φ[·] represents the standard normal CDF.

Suppose today’s seminar speaker is presenting evidence that the ith variable is a very strong
predictor, |β̂i| � threshold. If your past experience with (I − 1) other variables tells you that
σ2 � 0, this result should strike you as quite plausible. σ2 � 0 means that it is quite common for
a researcher to draw a β?i far from zero. By contrast, if your past experience suggests that σ2 ≈ 0,
today’s result will strike you as highly implausible. You will rationally discount the seminar
speaker’s evidence, not because he did anything wrong, but because you think his result is very
unlikely to begin with. σ2 ≈ 0 means that tradable anomalies are quite rare. But, your past
experience could not have dictated that σ2 = 0 exactly. If it did, then you would not have even
bothered to show up to the seminar in the first place. There would have been nothing that the
seminar speaking could say to convince you that β?i 6= 0, that is, you had ‘dogmatic priors’.

If researchers have been applying the same empirical techniques to the same collection of data
sets for a long time already, then σ2 will be close to zero. It is unlikely that these same techniques
will suddenly uncover a new variable after years and years of trying. But, these exact same
techniques can be given new life by the introduction of an important new data set, such as the
Trade and Quote Database (TAQ). That being said, we do not have a full explanation for variation
in σ2 over time. Our approach is similar in spirit to the idea of estimating stock-market volatility
(Andersen et al., 2003). We certainly do not think that there is a single unified explanation for all
stock-market fluctuations. And, almost by definition, uncertainty can rise for any number of reasons.
Better understanding the drivers of the anomaly-discovery process is an important and understudied
topic.

We are proposing a simple model of the anomaly-discovery process. It is possible to extend this
simple model in various ways to make it more realistic.2 These extensions are promising avenues for
future research, and we use numerical simulations to explore many of these possibilities in Section
2.3. We consider our paper only as a first step in explicitly studying the anomaly-discovery process.
We hope our paper can spark interest in this topic.

Publication Bias. At first glance, the assumption of a normally distributed β?i seems to be
at odds with the existence of publication bias. If researchers are engaging in data mining, why are
there not peaks in the β?i distribution right above/below the positive/negative 5% p-value cutoffs?
After all, this is the level of statistical significance that is needed to get a paper published.

Using a cross-sectional OLS regression like in Equation (1) to estimate β?i based on
pre-publication data does produce an empirical distribution with two large masses immediately
above/below the positive/negative 5% p-value cutoffs as shown by the red shaded region in Figure 2.
2We would like to thank several discussants for pointing out possible ways to do this. For example, you could model
priors over Sharpe ratios rather than the level of predictability as suggested by Svetlana Bryzgalova and we plan to
pursue these extensions in future work.
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Figure 2. Publication Bias. x-axis: value of βi. y-axis: empirical density computed using
10,000 simulations. Each simulation repeatedly samples from the data-generating process
governed by Equations (6) and (7) with (N + 1) = 1,000 stocks and parameter values µ? = 0%,
σ = 1%, and sei = 1% until the realized OLS estimate, β̂i, has p < 0.05. Red-shaded region
reports empirical density of the resulting β̂i estimates, which correspond to pre-publication
empirical results. Black-shaded region reports empirical density of β?i values associated with each
β̂i estimate. These values correspond to long-run average post-publications empirical results.
Blue line is a normal distribution with same mean and variance as the empirical β?i distribution.

This figure is based on 10,000 simulations of the data-generating process from Equations (6) and (7)
with (N + 1) = 1,000 stocks and parameter values µ? = 0%, σ = 1%, and sei = 1%. Each
simulation starts by repeatedly sampling from this data-generating process until the realized
in-sample OLS estimate, β̂i, has a p < 0.05. The red-shaded region reports the empirical density of
the resulting β̂i realizations conditional on statistical significance.

But, we are not modeling the β̂i distribution in Equation (6); we are modeling the β?i
distribution. The β̂i distribution, which is depicted by the red-shaded region in Figure 2, is a
function of both the β?i distribution and publication bias. If you are concerned about data mining,
p-hacking, publication bias, etc. . . , then you must believe that these research practices have a big
effect on the β̂i distribution. So, there is no reason to expect the β̂i distribution to look anything
like the β?i distribution. This is precisely what the black-shaded region in Figure 2 shows.3 This
region reports the empirical density of the realized β?i values in those 10,000 simulations which lead
to a significant β̂i estimate at the 5% level. In spite of the existence of an extreme form of
publication bias, the black-shaded region is not far from normal as depicted by the blue curve
representing a normal density with the same mean and variance.4

Empirical Bayes. The existence of the anomaly zoo is a sign that financial economists have
adopted bad research practices. But, if these research practices matter, then they must be affecting
3We would like to thank our discussant, Yan Liu, for raising these points.
4The black distribution is slightly flatter around zero. But, we verify in Figure 4 that our econometric estimator is
robust to sampling β?

i from this flattened post-publication distribution rather than the assumed normal distribution.
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your prior beliefs about the likelihood of encountering a tradable anomaly in today’s seminar. Your
past experience with other published results in the anomaly zoo—some tradable anomalies and
many more spurious predictors—must contain valuable information about how often the variables
produced by prevailing research practices turn out to be tradable anomalies going forward.

Thus, the cross-sectional asset-pricing literature represents a large data set of parallel past
situations for you to draw on, one for each variable you have encountered over the course of your
career i = 1, . . . , I . We use empirical-Bayes methods to formalize the process by which researchers
convert past experience with such variables into a prior for next time around. As Efron and Hastie
(2016, p. 88) writes, empirical-Bayes methods “remove the usual Bayesian scaffolding. In place of a
reassuring prior, the statistician [puts] his or her faith in the relevance of the ‘other’ cases in a large
data set to the direct case of interest.” After being introduced by Robbins (1956), the first major
work on empirical-Bayes methods was a series of papers by Efron and Morris (1972, 1973, 1975).5

Empirical-Bayes applications all have the same basic structure (cf. Maritz, 1970, p. 13). They
start with a problem involving repeated sampling from an unknown prior distribution, g[σ2]. This
repeated sampling yields unseen realizations, {β?1 , . . . , β?I}. Each of these unseen realizations, β?i ,
provides an observation, β̂i ∼ fβ?i [·], drawn from a known probability family. On the basis of these
observations, {β̂1, . . . , β̂I}, a researcher wishes to solve some inference problem that would be easy
if only he knew the true prior distribution, g[σ2], e.g., in today’s seminar, you want to estimate the
true slope coefficient associated with the ith variable, β?i , after seeing the speaker’s in-sample OLS
estimate, β̂i—a problem that would be easy if only you knew the correct choice of priors.

Here is how empirical Bayes solves this problem. First, convert the information about each other
variable i′ 6= i into an estimated value for σ2, which we will denote v̂2

i′ . Then, since each variable in
the anomaly zoo represents a parallel situation with some noise, take the average of these (I − 1)
variable-specific estimates, v̂2

¬i
def= 1

I−1 ·
∑
i′ 6=i v̂

2
i′ . Finally, plug this average value into your prior

distribution, g[v̂2
¬i]. These steps allow you to “[learn the] appropriate prior distribution from ongoing

statistical experience rather than knowing it by assumption (Efron, 2013).”
The existing Bayesian asset-pricing research interprets priors as having something to do with the

market conditions for predictability. But, there is no general theory of these conditions, which makes
it hard to make sense of such priors. As a result, this literature offers no guidance about which
priors to use. We resolve this paradox by pointing out that, in the absence of a general theory,
5There is some ambiguity about naming conventions. As Efron (2012, p. 14) writes, “Robbins reserved the name
‘empirical Bayes’ for situations where a genuine prior distribution was being estimated, using ‘compound Bayes’ for
more general parallel estimation and testing situations, but Efron and Morris (1973) hijacked ‘empirical Bayes’ for
James and Stein-type estimators.” “One might refer to Robbins’s formulation as nonparametric empirical Bayes;
whereas, the formulation discussed here can be referred to as parametric empirical Bayes. (Casella, 1985)” Parametric
empirical Bayes sometimes goes by the name of ‘objective Bayes’ (Berger, 2006) or ‘hierarchical Bayes’ (Gelman
et al., 2013) in the statistics literature, too. There are a couple of recent financial-econometrics papers that use
empirical Bayes methods to correct for the effects of data mining (see Liu et al., 2018; Chen and Zimmermann, 2020).
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researchers’ priors are likely determined by their first-hand knowledge of the anomaly-discovery
process. We may not know much about the underlying model underpinning both medium-term
momentum (Jegadeesh and Titman, 1993) and investment growth (Titman et al., 2004), but we
know a lot about the empirical toolkit Sheridan Titman used to discover both variables.

2.2 Econometric Estimator
We are using σ2, the variance of β?i , to parameterize the efficacy of current research practices. We
now show how to apply univariate Ridge regressions to estimate this parameter based on the
subsequent performance of every other variable in the anomaly zoo. Since each of these variables is
just one of many parallel situations, we can then average these variable-specific estimates for σ2 to
compute the prevailing anomaly base rate. This averaging reflects the implicit process by which a
researcher uses his past experience with other variables to inform his prior for use next time around.

Ridge Regression. We study a penalized-regression procedure known as the Ridge regression
(Hoerl and Kennard, 1970). A Ridge regression combines a standard OLS regression with a
quadratic penalty that shrinks OLS-regression estimates towards zero. Using the Ridge to compute
the slope coefficient, β̂i[λ], for the ith predictor means solving the following optimization problem:

β̂i[λ] def= arg min
β

{
1
N
·∑n

(
Rn − µ̂− β ·Xn,i

)2
+ λ · β2

}
. (10)

λ · β2 represents the quadratic penalty, and λ ≥ 0 is known as the ‘tuning parameter’. While there
are a total of (N + 1) stocks, the sum-of-squares term is divided by N in Equation (10) because it
already includes the estimated mean, µ̂, leading to a degrees-of-freedom correction.

It is possible to analytically solve for β̂[λ] in a univariate setting:

β̂i[λ] =
(

1
1+λ

)
· β̂i. (11)

When λ = 0, the penalty function disappears, 0 · β2 = 0, and the results of the Ridge coincide with
those of an OLS regression, β̂i = β̂i[0]. But, for all λ > 0, the quadratic penalty in Equation (10)
shrinks OLS-regression coefficients toward zero, with larger λs resulting in more shrinkage.6

Bayesian Interpretation. There is a Bayesian interpretation for this shrinkage. You can
view it as the effect of incorporating prior beliefs about the volatility of the true slope coefficients,
6The first-order condition (FOC) of the optimization problem in Equation (10) is

1
N ·
∑

n (Rn − µ̂) ·Xn,i = β ·
( 1

N ·
∑

n X
2
n,i + λ

)
We have normalized each predictor in the cross-section to have zero mean and unit variance, 1

N+1 ·
∑

n Xn,i = 0 and
1
N ·
∑

n X
2
n,i = 1. Thus, the left-hand side is just the standard OLS slope coefficient, β̂i = β̂i[0]; and, the right-hand

side simplifies to β · (1 + λ). Isolating β on the left-hand side then results in formula given by Equation (11).
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β?i , when these coefficients are drawn from a common normal distribution as in Equation
(6). This is because the negative posterior log likelihood of β?i = β given the realized data,
R

def= {R1, . . . , RN+1} and Xi
def= {X1,i, . . . , XN+1,i}, can be written as follows

− log Pr[β |R,Xi] = 1
2·(N ·ŝe2

i )
·∑n

(
Rn − µ̂− β ·Xn,i

)2
+ 1

2·σ2 · (β − 0)2 + · · ·

= 1
2·ŝe2

i

·
{

1
N
·∑n

(
Rn − µ̂− β ·Xn,i

)2
+ ŝe2

i

σ2 · β2
}

+ · · ·
(12)

where the “· · · ” terms represent constants that do not depend on the choice of β.
Thus, when using the appropriate tuning parameter,

λi = ŝe2
i /σ

2, (13)

estimating a univariate Ridge regression in Equation (10) is equivalent to finding the most likely
estimate for β?i given both your prior beliefs and the observed data which, that is, to minimizing the
negative posterior log likelihood in Equation (12). Since this fully Bayesian estimate will have the
lowest out-of-sample prediction error on average, we can use this connection to turn your past
experience with (I − 1) other variables into (I − 1) different variable-specific estimates for σ2 by
inverting the best-fit λ. In our empirical implementation, we estimate λ period-by-period and make
out-of-sample forecasts using a constant sample window estimate to study the performance of
newly-discovered characteristics.7

Standard Error. Notice that λi might be large for either of two reasons in Equation (13).
First, the anomaly base rate might be really low. If it is very unlikely that a researcher discovers a
new cross-sectional predictor, then σ2 must be tiny and you should heavily discount any empirical
evidence that suggests otherwise for the ith variable. Second, you might not be very confident in
your estimated slope coefficient for the ith variable. If the variance of your estimated slope
coefficient is quite large after seeing data on the cross-section of (N + 1) excess returns, ŝe2

i � 0,
then you should also place less weight on any estimated |β̂i| � 0.

So, in order to learn about σ2 by inverting the best-fit tuning parameter for the ith variable, we
have to be able to estimate ŝe2

i separately for each variable. We can do this using OLS:

N · ŝe2
i = 1

N−1 ·
∑
n

(
Rn − µ̂− β̂i ·Xn,i

)2
. (14)

We use this OLS-based approach to estimating ŝe2
i when searching for the best-fit tuning parameter

7We use Ridge regressions because we are assuming that β?
i is normally distributed. A different choice of prior

distributions would suggest using a different kind of penalized regression. e.g., if β?
i were drawn from a Laplace

distribution, then the most efficient way to estimate σ2 would be to use the LASSO (Park and Casella, 2008). Such
an approach would result in a slightly different functional relationship between the best-fit λi and σ2. However, the
same core economic intuition would still apply. We discuss this extension in more detail in Appendix B.
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associated with each variable i = 1, . . . , I.

In-Sample Overfitting. What exactly does it mean to choose the ‘best-fit tuning parameter’
though? One approach you could take would be to choose the tuning parameter λi > 0 that
best fits the data you have observed for each variable in-sample. Let Erri[λ] denote a Ridge
regression’s expected in-sample prediction error when using a particular value of λ given the realized
cross-section of excess returns in a particular month and lagged values of the ith variable:

Err[λ|R,Xi] def= E
[ (
Rn − µ̂− β̂i[λ] ·Xn,i

)2
]
. (15)

This is called the ‘training error’ (Hastie et al., 2001). We will typically write Err[λ|R,Xi] = Erri[λ].
Unfortunately, this simple approach is too simple. No matter what the true value of σ2 is, the

training error will always be minimized by setting λi = 0. In other words, an OLS regression will
always outperform a Ridge regression in sample according to this metric. If ṽ2

i denotes the
parameter estimate with the minimum in-sample prediction error for the ith variable,

ṽ2
i

def= arg min
v2>0

{
Erri[ŝe2

i /v
2]
}
, (16)

then we have that E[ṽ2
i ] =∞ regardless of which σ2 > 0 was used to generate the data.

Minimizing the training error requires fine-tuning the slope coefficient to explain variation in
excess returns coming from in-sample noise. And, this is easiest when there is no penalty for doing
so—i.e., when λi = 0; or equivalently, when ṽ2

i =∞. Put another way, the ratio λi = ŝe2
i /σ

2

governs the relative likelihood that a statistically significant estimate for the slope coefficient,
|β̂i| � 0, is due to in-sample overfitting rather than the existence of an honest-to-goodness tradable
anomaly, β?i 6= 0. But, the estimator ṽ2

i does not reflect this comparison. It only reveals whether the
in-sample fit is good; it does not tell you anything about the origins of this good performance.

Econometric Estimator. If we want an unbiased estimator for σ2, then we need to adjust
the metric used above so that it does not reward in-sample overfitting. Large values of σ2 will result
in lots of in-sample overfitting, so these choices should receive a large penalty; whereas, small values
of σ2 will result in little in-sample overfitting, so these choices should receive a small penalty.

Proposition 2.2 (Econometric Estimator). Let E[·] denote an expectations operator with respect
to realizations of β?i , and let Erri[λ] denote the training error as specified in Equation (15). If v̂2

i

denotes the parameter estimate with the minimum penalized training error for the ith variable,

v̂2
i

def= arg min
v2>0

{
Erri[ŝe2

i /v
2] + 2 ·

(
1

1+ŝe2
i /v

2

)
· ŝe2

i

}
, (17)

then for any σ2 > 0 we have that E[v̂2
i ] = σ2.
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Each variable implicated in the anomaly-zoo literature represents one of many parallel situations.
So, after estimating the v̂2

i′ associated with each variable i′ 6= i, we can average these (I − 1)
variable-specific estimates to form a prior for use when evaluating the ith variable.

Proposition 2.2 follows the same basic logic as many other information-theoretic selection
criteria, such as the Akaike information criterion (AIC; Akaike, 1974). Such procedures minimize a
mean squared-error loss function plus an additional penalty proportional to the number of degrees of
freedom, df, times the noise variance, V̂ar[εn,i]. In fact, an alternative way to derive the penalty
function in Equation (17) is to note that the effective degrees of freedom in a univariate Ridge
regression is given by 1/(1 + λ). Thus, since V̂ar[εn,i] = N · ŝe2

i , the Akaike penalty function,
2 · (df /N)× V̂ar[εn,i], reduces to the one in Equation (17) when λi = ŝe2

i /σ
2. Similarly, Stone

(1977) shows that using Proposition 2.2 to estimate σ2 will deliver estimates that are asymptotically
equivalent to those of cross-validation. And, we illustrate this point in the simulation analysis below.

Forecasting vs. Learning. We have just outlined a univariate approach to estimating σ2.
In essence, we are asking: ‘How can you separately use the information in each of the other (I − 1)
variables to learn about σ2?’ We are not looking for the best combination of variables. But, that is
not to say looking for the best combination is wrong. It just depends on what you are after. Taming
the factor zoo (Feng et al., 2017) will mean different things to different people.

If all you care about is making good forecasts, taming the factor zoo will mean looking for the
best combination of variables. It will mean using something like principle-component analysis to
collapse the information in all I variables down into a single forecasting variable. But, if you want
to use these same variables to learn how to make actionable predictions, you do not want to
combine variables. This would throw away information and make it harder for you to learn.

Consider an example. Driving a car is a complicated activity; there are lots of different factors
involved. It has taken quite a while for engineers to teach a computer how to do it.8 But, it is
nevertheless easy to forecast who will be a good driver. You can collapse all the information in the
zoo of driving-related factors into a single variable: IsTeenager ∈ {True,False} (Jonah, 1986). If
you are an insurance underwriter trying to forecast future claims, this single variable effectively
tames the factor zoo. But, if you are a Google engineer, it does not. You cannot create a self-driving
car by not installing a 17-year-old operating system.

2.3 Simulation Analysis
A researcher’s past experience with other variables in the anomaly zoo contains information about
the efficacy of financial economists’ research practices. So, it is possible to turn these many parallel
signals about methodological efficacy into an base rate for use when evaluating the next candidate
predictor. We apply empirical-Bayes methods to formalize this reasoning. We then encode the
8Wired. 12/13/2018. The Wired Guide to Self-Driving Cars.
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efficacy of our shared research practices as a variance, σ2, and use the Bayesian interpretation of the
Ridge regression to extract information about this variance from other variables.

We are not developing empirical-Bayes methods from scratch or pointing out the Bayesian
interpretation of univariate Ridge regressions for the first time. Instead, our core insight has to do
with using these ideas to choose the right priors. We have simplified our statistical approach as
much as possible to highlight the economic intuition guiding our analysis. Modeling assumptions,
like having the true slope coefficients being drawn iid normal, are there for ease of exposition. They
are not central to our analysis. And, we now run a variety of numerical simulations to demonstrate
the robustness of our simple statistical approach.

Simulation Setup. We simulate data from the following generalization of Equation (6):

β?i
iid∼ Dist[µ, σ2]. (18)

In the analysis below, we vary both the distribution function—i.e., the functional form of
Dist[·]—as well as the mean and variance of the β?i distribution—i.e., the parameter values µ and
σ2. In addition, we also verify that our results using a regularized maximum-likelihood approach as
outlined in Proposition 2.2 closely match the results when using a cross-validation approach.

Unless otherwise stated, all simulations will use the data-generating process in Equation (7) for
a cross-section of (N + 1) = 1,000 excess returns where µ? = 0% per month and sei = 1% per
month. Everything will be the same as in our main statistical framework except for the fact that the
true slope coefficients will be drawn as in Equation (18). When studying the effects of changing
either µ or Dist[·], we will compare the average estimated v̂2

i in 10,000 simulations to the true σ2

used to generate the data. When studying the effects of changing σ2, we will compute the average
fit of the econometric estimator outlined in Proposition 2.2 across the entire range of choices for v2:

Fiti[v2] def= Erri[ŝe2
i /v

2] + 2 ·
(

1
1+ŝe2

i /v
2

)
· ŝe2

i . (19)

Note that in each simulation we will be separately estimating ŝe2
i every time we estimate v̂2

i , just
like we will have to when studying real-world data.

Benchmark Simulation. We begin with a benchmark simulation to confirm that our
statistical approach recovers the correct value of σ2 when we simulate data drawn from our
hypothesized anomaly-discovery process in Equation (6), Dist[·] = Normal[·] and µ = 0% per
month. We study three different regimes, σ2 ∈ {0.25%, 1.00%, 4.00%}. σ2 = 4.00% denotes a
regime where tradable anomalies are likely; σ2 = 0.25% denotes a regime where tradable anomalies
are unlikely; and, σ2 = 1.00% denotes a regime somewhere in between. Each panel in Figure 3
reports the average fit at a range of input values v2 ∈ (0, 16] when the data are generated using a
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Figure 3. Benchmark Simulation. Each panel reports the results of 10,000 simulations of a
market with (N + 1) = 1,000 stocks using a different prior variance, σ2 ∈ {0.25%, 1.00%, 4.00%}.
Each simulation starts by sampling β?i

iid∼ Normal[0, σ2]. Then, using the realized value of
β?i , we generate a cross-section of excess returns as in Equation (7) using the parameters
µ? = 0 and ε?n,i

iid∼ Normal[0, N · 1%2]. Finally, we compute the penalized fit characterized by
Proposition 2.2 at values v2 ∈ (0, 16]. x-axis: v2 ∈ (0, 16] on a log scale. y-axis: average Fiti[v2]
at each value of v2 across all 10,000 simulations. Large dot: v2 value that minimize each curve,
which corresponds to estimate defined by Proposition 2.2 and should match σ2 for each panel.

particular prior variance, σ2. The figure confirms that, when we simulate data using a particular
value of σ2, the objective function in Proposition 2.2 is minimized at that value.

Non-Zero Mean. Next, we explore the sensitivity of our statistical approach to the
assumption that µ = 0% per month. We do this by running simulations where Dist[·] = Normal[·],
σ2 = 1%2, and µ ∈ [−0.3%, 0.3%]. The top panel of Figure 4 shows the results. Each black dot
reports the average value of v̂2

i produced by our statistical approach in 10,000 simulations using a
particular choice for µ. We look at values of µ ranging from −0.3% per month to 0.3% per month.
The true prior variance in all these simulations is σ2 = 1% per month, which is depicted by the
dashed red line in Figure 4. And, for any choice of µ ∈ [−0.3%, 0.3%], our results are quite close to
this theoretical target.

The inset figure shows that, if we extend the range of µ to ±1% per month, then the
econometric estimator in Proposition 2.2 will start to over-estimate σ2. The black dots are
the same as in the main figure. The white dots represent analogous calculations made using
µ ∈ [−1.0%, − 0.3%) ∪ (0.3%, 1.0%]. The tendency of our econometric estimator to over-estimate
σ2 when µ 6= 0 makes intuitive sense. The econometric estimator outlined in Proposition 2.2
assumes that µ = 0. So, it reads any deviation of β?i from zero as evidence of high prior variance,
even if the deviations are due to a non-zero mean.

Using an econometric estimator that is based on a misguided assumption about the true
data-generating process is not innocuous; however, the top panel in Figure 4 suggests that the
anomaly-discovery process would have to be implausibly efficient to materially affect our estimation
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results. If µ = 0.30% per month, then the long-short portfolio associated with a randomly selected
variable i = 1, . . . , I would have excess returns of 30 bps per month. This is too large an amount of
out-of-sample cross-sectional return predictability for the average variable (Harvey et al., 2016;
McLean and Pontiff, 2016; Linnainmaa and Roberts, 2018), especially since the sign of β?i can be
both positive and negative.

Non-Gaussian Prior. Section 2.2 shows how it is possible to use a univariate Ridge
regression to learn about σ2 when the true slope coefficients are drawn from a normal distribution.
We just saw that allowing this normal distribution to have a non-zero mean is unlikely to affect our
statistical approach in real-world settings. But, what if the true slope coefficients are not even being
drawn from a normal distribution to begin with? If the vast anomaly zoo only contains a small
handful of tradable anomalies, then you might expect the β?i distribution to have fat tails such that
extreme observations are more likely. We also saw in Figure 2 that publication bias results in a β?i
that is not exactly normal, but we demonstrate in the simulation that the normal approximation
still yields good estimates in this case.

We address these concerns in the bottom panel of Figure 4 by showing that our statistical
approach is still able to recover the correct value of σ2 when this parameter is the variance
of a non-Gaussian prior distribution. In other words, this simulation exercise varies the β?i
distribution used in Equation (18). Each panel reports results for a different prior distribution,
Dist[·] ∈ {Normal, Student’s t,Post-Publication}.

The left chart shows results when data are generated using Dist[·] = Normal[·] just like in our
primary analysis. Each black dot represents an average taken over 10,000 simulations using
(N + 1) = 1,000, µ = 0% per month, and σ2 ∈ [0.25, 4.00]. The x-axis represents the prior variance
used to simulate the data, σ2, while the y-axis reports the average estimated v̂2

i . Thus, if our
statistical approach is successful, all the black dots should be along the 45◦ dashed red line. And,
this is exactly what happens, providing further confirmation of the earlier benchmark-simulation
results in Figure 3 at a wider range of input values.

The middle chart is different. Rather than drawing β?i from a normal distribution, this chart
shows analogous results when β?i is sampled from a Student’s-t distribution:

β?i = σ · ξi
ξi

iid∼ StudentT[3].
(20)

Using a Student’s-t distribution for β?i is one way to capture the idea that the distribution of true
slope coefficients is fat tailed. A Student’s-t distribution with 3 degrees of freedom has unit variance.
So, to make sure that β?i has the appropriate variance when simulating the data, we first sample
ξi

iid∼ StudentT[3] and then multiply the result by the desired prior volatility, β?i = σ · ξi. Just like

19



σ2 = 1.0

0.0

0.5

1.0

1.5

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Av
er

ag
e
v̂
2 i
→

µ →
0.0
0.5
1.0
1.5
2.0

-1.0 -0.3 0.0 0.3 1.0

Normal Student’s t Post-Publication

0.25 0.5 1 2 4 0.25 0.5 1 2 4 0.25 0.5 1 2 4

0.25
0.5

1
2
4

Av
er

ag
e
v̂
2 i
→

σ2 →

ξi ∼ Normal[0, 1]

β?
i = σ · ξi

ξi ∼ StudentT[3]

β?
i = σ · ξi√

3

ξi ∼ PostPub[5%]

β?
i = σ · ξi

Figure 4. Estimator Robustness. Top Panel: Simulation showing robustness to zero-
mean assumption. Each dot represents the average estimated v̂2

i across 10,000 simulations of a
market with (N + 1) = 1,000 stocks simulated using a given value of µ ∈ [−1%, 1%]. Each
simulation starts by sampling β?i

iid∼ Normal[µ, 1%2]. Then, we use the realized value of β?i to
generate a cross-section of excess returns as in Equation (7) using the parameters µ? = 0 and
ε?n,i

iid∼ Normal[0, N · 1%2]. y-axis: estimated anomaly base rate (see Proposition 2.2) under the
naïve assumption that µ = 0. Dashed red line is true prior variance used to generate the data,
σ2 = 1%2. x-axis: average strength of true slope coefficients µ ∈ [−0.3%, 0.3%] per month in
Equation (18). Inset: identical figure for µ ∈ [−1%, 1%]. Bottom Panel: Simulation showing
robustness to Gaussian-prior assumption. Each dot represents the average estimated v̂2

i across
10,000 simulations of a market with (N + 1) = 1,000 stocks simulated using a given prior
distribution, Dist[·] ∈ {Normal, Student’s t,Post-Publication}. Each simulation starts by
sampling β?i from the appropriate distribution. Then, we use the realized value of β?i to
generate a cross-section of excess returns as in Equation (7) using the parameters µ? = 0 and
ε?n,i

iid∼ Normal[0, N · 1%2]. x-axis: prior variance used to simulate the data, σ2, on a log scale.
Left: true slope coefficients drawn from a normal distribution, ξi iid∼ Normal[0, 1] and β?i = σ · ξi.
Middle: true slope coefficients drawn from a Student’s-t distribution, ξi iid∼ StudentT[3]
and β?i = σ · ξi. Right: true slope coefficients drawn from post-publication distribution,
ξi

iid∼ PostPub[5%] and β?i = σ · ξi, which requires an in-sample p-value less than 5%. If our
Gaussian-prior assumption is robust, the black dots should sit on 45◦ dashed red line.
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with the left chart, the middle chart depicts black dots that neatly line up along the 45◦ dashed red
line, which confirms that our statistical approach is able to recover the correct prior variance even
when β?i is drawn from a non-Gaussian distribution.

The right panel contains analogous results when sampling β?i from the post-publication
distribution in Figure 2. To create each dot, we iterate on a 3-step process: First, we sample
β?i ∼ Normal[0, σ2]. Second, we simulate a cross-section of excess returns using this particular β?i .
This is the pre-publication data associated with that β?i . Third, we check whether the associated
in-sample β̂i has a p-value < 5%. If the answer is yes, then it is publishable. If the answer is no,
then the predictor never sees the light of day. Whenever we find a publishable β?i , we simulate a
new cross-section of excess returns using this β?i value. This is the post-publication data associated
with the β?i . We stop once we have post-publication data for 10,000 realizations of β?i at each prior
variance. Each of the dots in the right panel represents the average estimated v̂2

i using the
post-publication data for these 10,000 simulations:

β?i = σ · ξi
ξi

iid∼ PostPub[5%].
(21)

Just as before, the black dots in the right chart line up neatly along the 45◦ red dashed line.
If you strongly believe that β?i is drawn from a non-Gaussian distribution, it is possible to

improve the efficiency of the econometric estimator in Proposition 2.2 by adjusting the penalty
function (see Appendix B). e.g., Park and Casella (2008) show that using the LASSO is tantamount
to adopting a Laplace prior for β?i . But, the basic insight underpinning both empirical and objective
Bayesian thinking is the same.

Moreover, this connection suggests an alternative economic interpretation of the results in this
paper. It is now common for financial economists to employ various kinds of penalized-regression
procedures. These tools are also widely used by execution desks. In both cases, the OLS-regression
procedure is being modified in order to control for false positives, data mining, p-hacking, etc. . . The
standard view is that penalized-regression procedures are a statistical tool for dealing with the
proliferation of variables. And, both empirical researchers and execution desks choose the penalty
function that best deals with the anomaly zoo in the setting they are currently facing. But, “any
sensible estimator is Bayesian for some prior (Diaconis and Skyrms, 2017).” So, if an empirical
researcher or execution desk comes to the conclusion that it is best to use a Ridge regression or the
LASSO when pruning away weak predictors, this says something important about the economics of
anomaly discovery, either in academia or at the research desk.

Cross-Validation. As we point out above, Stone (1977) shows that using a regularized
maximum-likelihood estimator, such as the one in Proposition 2.2, is asymptotically equivalent to
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Figure 5. Cross-Validation. Results for 10,000 simulations of a market with (N+1) = 1,000
stocks. For each simulation, we generate a new realization of the cross-section of excess returns
using the parameters µ? = 0, β?i

iid∼ Normal[0, σ2], and ε?n,i
iid∼ Normal[0, N · 1%2]. Solid black

line: average regularized Fiti[v2] at each value of v2 ∈ (0, 16]. Dashed red line: average
cross-validated Fiti[v2] at each value of v2 ∈ (0, 16]. x-axis: v2 on a log scale. Each panel
reports results for data simulated using σ2 ∈ {0.25%, 1.00%, 4.00%}. Large black dot: v2 value
that minimize each regularized curve, which corresponds to estimate defined by Proposition 2.2.
Large red/white triangle: v2 value that minimize each cross-validated curve. The cross-validated
analogue to Fiti[v2] is the test-sample mean squared error (MSE) of β̂i[λ] where λ is chosen to
have the lowest training-sample MSE. The training/test samples are chosen via a 10-fold scheme.

cross-validation in our setting. And, Figure 5 shows that this is indeed the case. The solid black line
in each panel corresponds to the results from Figure 3, which reports the average Fiti[v2] at each
value of v2 ∈ (0, 16] computed across 10,000 simulations. The dashed red line then replicates this
analysis using a cross-validated analogue to Fiti[v2]. The cross-validated analogue to Fiti[v2] is the
test-sample mean squared error (MSE) of β̂i[λ] where λ is chosen to have the lowest training-sample
MSE. The training/test samples are chosen via a 10-fold scheme. The red triangle corresponds to
the value of v2 that minimizes the cross-validated fit. The fact that this red triangle sits right on
top of the value produced by the regularized econometric estimator in Proposition 2.2 shows that
these two kinds of estimators produce identical results.

3 Estimation Results
Having described our statistical approach to estimating the anomaly base rate, we next apply it to
recover σ2 each month. We use data on a collection of 85 different variables that were published in
the academic literature some time after May 1973.

3.1 Data Description
We begin by describing the data and variables we use in our analysis.

Data Sources. We study the cross-section of monthly returns from May 1973 to June 2015
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for each U.S. stock traded on either the NYSE, Amex, or NASDAQ. These data come from the
Center for Research in Security Prices (CRSP) monthly stock file. To make sure that our results are
not being driven by small illiquid stocks, we exclude any stock with a price below $1 at the end of
the previous month. However, our empirical results are robust to applying other filters to our data
set as well (see Appendix D, Table D1). We use balance-sheet data from the Standard and Poor’s
Compustat database. All items are taken from the fiscal year ending in calendar year (y − 1) for
estimation starting in June of year y until May of year (y + 1) predicting returns from July of year
y until June of year (y + 1). To alleviate a potential survivorship bias due to back-filling, we require
that a firm has at least two years of Compustat data for it to be included in our sample. Let
(Nt + 1) denote the number of stocks in our sample in month t.

Return Predictors. We use a collection of 85 different variables that were first documented
in the academic literature sometime on or after May 1973. We list each variable along with its
publication date in Tables 1a, 1b, and 1c. Let It denote the set of variables discovered prior to
month t:

It
def=
{
i ∈ I : publication date for ith variable < t

}
. (22)

And, let It def= |It| denote the number of variables discovered prior to month t. So, looking at the
first four rows of Table 1a, we have IMay73 = 0, IJun73 = 3, . . . , IJun77 = 3, and IJul77 = 4.

Slope Coefficients. Each month t, we compute the realized returns to a zero-cost strategy
based on each variable i ∈ It by running a separate cross-sectional OLS-regression:

Rn,t = µ̂t + β̂i,t ·Xn,i,t−1 + ε̂n,i,t for each variable i = 1, . . . , It. (23)

Rn,t is the excess return of the nth stock in month t, µ̂t is the cross-sectional average excess return
for all stocks in our sample during month t, Xn,i,t−1 is the value of the ith variable for stock n in
the previous month normalized to have mean zero and unit variance in the cross-section, β̂i,t is the
OLS-regression coefficient for the ith variable in month t, and ε̂n,i,t is the regression residual.

Table 2 provides summary statistics describing these realized returns. There are two things
about this table that are worth pointing out. First, contrarian strategies, such as the long-term
reversals captured by the variable ‘Ret, 36-13’ in row five, will result in estimated values that are
negative on average. This is consistent with the modeling assumption that the true β?i,t values are
drawn from a mean-zero normal distribution. When we incorporate these sorts of variables in a
trading strategy, we will always trade in the appropriate direction. However, the sign of the slope
coefficient associated with a cross-sectional long-short strategy is arbitrary.

Second, our estimates for each variable’s β̂i,t tend to be smaller than the ones reported in
the original papers. This is because researchers typically report the excess returns to sorted
high-minus-low portfolios. This standard practice is tantamount to running a cross-sectional
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Name P. Date Description
1. Beta 1973-05 Rolling CAPM beta
2. BetaSq 1973-05 Rolling CAPM beta, squared
3. IdioVolCAPM 1973-05 Idiosyncratic volatility, CAPM
4. Earn/Share 1977-06 Earnings per share
5. Debt/Price 1979-06 Debt to price
6. Divd/Price 1979-06 Dividend to price
7. Mcap 1981-03 Market capitalization, prev. fiscal year
8. Earn/Price 1982-08 Earnings to price
9. Ret, 36-12 1985-07 Cum. return, months [−36, − 12)
10. AvgSpread 1986-12 Mean bid-ask spread
11. Assets/Mcap 1988-06 Assets to market cap
12. Levrg 1988-06 Leverage
13. Levrg/Price 1988-06 Leverage to price
14. Sales/Cash 1989-11 Sales to cash
15. LtCF 1989-11 Long-term cash flow
16. CurrRatio 1989-11 Current ratio
17. %∆CurrRatio 1989-11 Perc. change in current ratio
18. %∆QuickRatio 1989-11 Perc. change in quick ratio
19. %∆[Sales/Invtry] 1989-11 Perc. change in sales to inventory
20. QuickRatio 1989-11 Quick ratio
21. Sales/Invtry 1989-11 Sales to inventory
22. Sales/Recv 1989-11 Sales to receivables
23. Ret, 1-0 1990-07 Return, month [−1, 0)
24. Ret, 12-1 1990-07 Cum. return, months [−12, − 1)
25. BkVal 1992-06 Book value
26. MonthlyMcap 1992-06 Market cap, prev. month
27. Sales/Price 1992-06 Sales to price
28. %∆[Deprc/PP&E] 1992-09 Perc. change in depreciation to PP&E
29. D&A/Assets 1992-09 D&A to assets

Table 1a. List of Variables. List of variables documented in the academic literature
sometime on or after May 1973. Variables are constructed using data from CRSP and
Compustat. Name: The name for the variable used throughout this paper. P. Date: The month
of publication for the first academic paper about each variable. Description: A description of
how variable is constructed for each stock.
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Name P. Date Description
30. Deprc/PP&E 1992-09 Depreciation to PP&E
31. Ret, 6-1 1993-03 Cum. return, months [−6, − 1)
32. %∆Sales 1994-12 Perc. change in sales
33. OpAccr 1996-07 Operating accruals
34. CapitalTOver 1996-07 Capital turnover
35. RetOnEquity 1996-07 Return on equity
36. KaplanZingales 1997-02 Kaplan-Zingales index
37. %∆[∆Sales/∆Invtry] 1997-04 Perc. change in ∆Sales to ∆Inventory
38. %∆[∆Sales/∆Recv] 1997-04 Perc. change in ∆Sales to ∆Receivables
39. %∆[∆Sales/∆XG&A] 1997-04 Perc. change in ∆Sales to ∆XG&A
40. %∆[∆GrMgn/∆Sales] 1998-01 Perc. change in ∆Gross margin to ∆Sales
41. LagTOver 1998-08 Lagged turnover
42. Adj[BkVal/Mcap] 2000-02 Ind. adjusted book-to-market ratio
43. AdjMcap 2000-02 Ind. adjusted market cap
44. SdTOver 2001-01 Std. deviation of daily turnover
45. AdvertRate/Ret 2001-12 Advertising expense rate to returns
46. R&D/Mcap 2001-12 R&D to market cap
47. R&D/Sales 2001-12 R&D to sales
48. Advert/Mcap 2001-12 Advertising expense to market cap
49. ∆Invtry/Assets 2002-06 Inventory changes to assets
50. OpCF/Price 2004-04 Operating cash flow to price
51. Invmt/Lag[AvgInvmt] 2004-12 Investment to trailing 3 years average
52. NetOpAssets/Sales 2004-12 Net operating assets to lagged sales
53. %∆BkVal 2005-09 Perc. change in book value
54. %∆LtDebt 2005-09 Perc. change in long-term debt
55. Price-52WkHi 2005-11 Closeness to previous 52-week high
56. IdioVolFF93 2006-02 Idiosyncratic volatility, FF93
57. TotVol 2006-02 Total volatility

Table 1b. List of Variables, Ctd. List of variables documented in the academic literature
sometime on or after May 1973. Variables are constructed using data from CRSP and
Compustat. Name: The name for the variable used throughout this paper. P. Date: The month
of publication for the first academic paper about each variable. Description: A description of
how variable is constructed for each stock.
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Name P. Date Description
58. ε%∆Mcap 2006-08 Residual perc. change in market cap
59. NetExtnlFin/Assets 2006-10 Net external financing to assets
60. DailyBeta 2006-11 Daily rolling CAPM beta
61. NetPO/Price 2007-04 Net payouts to price
62. PO/Price 2007-04 Payouts to price
63. NetPO 2007-04 Net payout ratio
64. RetOnInvstCap 2007-06 Return on invested capital
65. %∆Shares 2008-04 Perc. change in shares outstanding
66. ProfMgn 2008-05 Profit margin
67. AdjProfMgn 2008-05 Ind. adjusted profit margin
68. RetOnOpAssets 2008-05 Return on net operating assets
69. AssetTOver 2008-05 Asset turnover
70. AdjAssets 2008-05 Ind. adjusted total assets
71. %∆InvmtX 2008-07 Perc. change in investments (Xing)
72. %∆Invmt 2008-08 Perc. change in investments
73. ∆AdjShares 2008-08 Change in split-adjusted shares outstanding
74. RetOnCash 2009-01 Return on cash
75. Tangibility 2009-04 Asset tangibility
76. ∆AdjTOver 2009-10 Change in market-adjusted turnover
77. UnexplVlm 2009-10 Standardized unexplained volume
78. RetOnAssets 2010-05 Return on assets
79. OpLevrg 2011-01 Operating leverage
80. MaxRet 2011-02 Max monthly return during prev. year
81. FreeCF 2011-05 Free cash flow
82. R&Dcapital 2011-09 R&D capital
83. %∆Invtry 2012-01 Perc. change in inventory
84. Ret, 12-6 2012-03 Cum. return, months [−12, − 6)
85. CashHldgs 2012-04 Cash holdings

Table 1c. List of Variables, Ctd. List of variables documented in the academic literature
sometime on or after May 1973. Variables are constructed using data from CRSP and
Compustat. Name: The name for the variable used throughout this paper. P. Date: The month
of publication for the first academic paper about each variable. Description: A description of
how variable is constructed for each stock.
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Avg Sd Avg Sd Avg Sd
Beta 0.00 2.21 Deprc/PP&E 0.22 1.76 ε%∆Mcap 0.16 1.22
BetaSq 0.01 2.21 Ret, 6-1 −0.16 2.36 NetExtnlFin/Assets 0.00 0.52
IdioVolCAPM 0.70 2.88 %∆Sales −0.29 0.84 DailyBeta 0.06 1.79
Earn/Share −0.31 2.15 OpAccr 0.01 0.97 NetPO/Price −0.15 1.17
Debt/Price 0.10 1.48 CapitalTOver −0.17 0.67 PO/Price −0.16 0.99
Divd/Price −0.14 1.74 RetOnEquity −0.44 1.94 NetPO −0.01 0.53
Mcap −0.55 1.69 KaplanZingales −0.03 0.94 RetOnInvstCap −0.28 1.04
Earn/Price −0.21 1.91 %∆[∆Sales/∆Invtry] 0.07 0.49 %∆Shares 0.14 0.36
Ret, 36-12 −0.56 1.63 %∆[∆Sales/∆Recv] 0.11 0.52 ProfMgn 0.07 0.52
AvgSpread 0.59 1.68 %∆[∆Sales/∆XG&A] −0.10 0.56 AdjProfMgn −0.49 1.34
Assets/Mcap 0.25 1.87 %∆[∆GrMgn/∆Sales] −0.03 0.59 RetOnOpAssets −0.01 1.02
Levrg −0.05 1.42 LagTOver −0.04 2.44 AssetTOver −0.15 0.67
Levrg/Price 0.05 1.63 Adj[BkVal/Mcap] 0.39 0.90 AdjAssets 0.17 0.97
Sales/Cash 0.14 1.97 AdjMcap −0.31 1.43 %∆InvmtX −0.17 0.47
LtCF −0.05 1.37 SdTOver 0.04 1.73 %∆Invmt 0.09 0.95
CurrRatio −0.20 0.57 AdvertRate/Ret 0.31 1.02 ∆AdjShares −0.41 0.85
%∆CurrRatio −0.20 0.58 R&D/Mcap 0.47 1.69 RetOnCash −0.05 0.87
%∆QuickRatio 0.08 0.45 R&D/Sales 0.12 2.00 Tangibility 0.00 0.79
%∆[Sales/Invtry] −0.03 1.62 Advert/Mcap 0.64 1.20 ∆AdjTOver 0.14 0.39
QuickRatio −0.01 1.45 ∆Invtry/Assets −0.15 0.52 UnexplVlm 0.24 0.55
Sales/Invtry −0.08 0.85 OpCF/Price 0.01 1.01 RetOnAssets −0.25 0.96
Sales/Recv 0.08 0.72 Invmt/Lag[AvgInvmt] −0.08 0.43 OpLevrg 0.15 0.55
Ret, 1-0 −0.45 2.04 NetOpAssets/Sales −0.07 0.89 MaxRet 0.07 1.06
Ret, 12-1 −0.17 2.40 %∆BkVal −0.26 0.70 FreeCF −0.10 0.89
BkVal 0.39 1.45 %∆LtDebt −0.11 0.40 R&Dcapital 0.31 1.30
MonthlyMcap −0.82 1.93 Price-52WkHi −0.46 2.33 %∆Invtry −0.07 0.42
Sales/Price 0.38 1.56 IdioVolFF93 0.31 1.66 Ret, 12-6 −0.10 0.69
%∆[Deprc/PP&E] 0.00 0.46 TotVol 0.28 1.83 CashHldgs 0.10 0.99
D&A/Assets 0.32 1.15

Table 2. Estimated β̂i,t. Summary statistics describing the realized returns to a zero-cost
trading strategy based on each variable i = 1, . . . , It. These realized returns correspond to the
estimated β̂i,t in Equation (23). Sample Period: June 1973 to June 2015. Units: % per month.
Sparkline Plots: time series for each variable on a common scale, −3% < β̂i,t < 3%. All plots
end in June 2015. Variables discovered later have shorter plots. Red indicated negative returns.
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Avg Sd Avg Sd Avg Sd
Beta 3.40 4.79 Deprc/PP&E 2.07 3.97 ε%∆Mcap 1.41 2.46
BetaSq 3.40 4.79 Ret, 6-1 2.32 4.22 NetExtnlFin/Assets 0.23 0.52
IdioVolCAPM 4.12 5.30 %∆Sales 0.74 1.45 DailyBeta 2.15 3.73
Earn/Share 2.85 4.32 OpAccr 0.87 1.80 NetPO/Price 1.32 2.75
Debt/Price 1.71 3.34 CapitalTOver 0.42 1.10 PO/Price 0.93 1.79
Divd/Price 2.40 3.80 RetOnEquity 2.40 4.19 NetPO 0.22 0.50
Mcap 2.34 3.87 KaplanZingales 0.78 1.82 RetOnInvstCap 1.10 2.27
Earn/Price 2.35 3.92 %∆[∆Sales/∆Invtry] 0.20 0.60 %∆Shares 0.11 0.18
Ret, 36-12 1.98 3.78 %∆[∆Sales/∆Recv] 0.24 0.85 ProfMgn 0.22 0.37
AvgSpread 2.27 3.83 %∆[∆Sales/∆XG&A] 0.27 0.45 AdjProfMgn 1.92 3.18
Assets/Mcap 2.63 4.37 %∆[∆GrMgn/∆Sales] 0.30 0.56 RetOnOpAssets 0.88 2.19
Levrg 1.54 3.19 LagTOver 3.54 4.91 AssetTOver 0.41 0.84
Levrg/Price 2.00 3.68 Adj[BkVal/Mcap] 0.92 1.74 AdjAssets 0.84 2.00
Sales/Cash 2.39 4.16 AdjMcap 1.27 2.95 %∆InvmtX 0.21 0.32
LtCF 1.42 2.94 SdTOver 2.10 3.45 %∆Invmt 0.85 1.51
CurrRatio 0.31 0.84 AdvertRate/Ret 0.85 2.08 ∆AdjShares 0.82 2.04
%∆CurrRatio 0.32 0.89 R&D/Mcap 2.16 3.81 RetOnCash 0.69 1.28
%∆QuickRatio 0.16 0.37 R&D/Sales 2.53 4.25 Tangibility 0.56 1.50
%∆[Sales/Invtry] 1.85 3.77 Advert/Mcap 1.64 3.30 ∆AdjTOver 0.14 0.35
QuickRatio 1.62 3.45 ∆Invtry/Assets 0.25 0.49 UnexplVlm 0.32 0.72
Sales/Invtry 0.63 1.72 OpCF/Price 0.94 2.08 RetOnAssets 0.93 1.91
Sales/Recv 0.48 1.02 Invmt/Lag[AvgInvmt] 0.15 0.30 OpLevrg 0.28 0.45
Ret, 1-0 2.19 4.22 NetOpAssets/Sales 0.72 1.75 MaxRet 1.07 1.75
Ret, 12-1 2.70 4.42 %∆BkVal 0.51 1.67 FreeCF 0.74 1.61
BkVal 1.84 3.34 %∆LtDebt 0.13 0.24 R&Dcapital 1.46 2.72
MonthlyMcap 2.70 4.41 Price-52WkHi 2.93 4.55 %∆Invtry 0.14 0.23
Sales/Price 2.00 3.69 IdioVolFF93 1.95 3.53 Ret, 12-6 0.43 0.74
%∆[Deprc/PP&E] 0.17 0.57 TotVol 2.35 3.87 CashHldgs 0.93 1.53
D&A/Assets 1.29 2.69

Table 3. Estimated v̂2
i,t. Summary statistics describing the variable-specific estimates for

the prior variance. We estimate v̂2
i,t separately for each variable i = 1, . . . , It in month t as

described in Proposition 2.2. Sample Period: June 1973 to June 2015. Units: %2 per month.
Sparkline Plots: time series for each variable on a common scale, 0% < v̂i,t < 6%. All plots end
in June 2015. Variables discovered later have shorter plots.
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regression where Var[Xn,i,t−1] < 1. For example, going long the top 10% of stocks and short the
bottom 10% of stocks corresponds to Var[Xn,i,t−1] = 1

10 · (+1)2 + 1
10 · (−1)2 = 1/5. And, since

β̂i,t = Cov[Rn,t, Xn,i,t−1]/Var[Xn,i,t−1], this approach would result in point estimates that are five
times larger than ours. We will adjust for this difference in the variance of the right-hand-side
variables when we consider the effects of implementation costs before combining variables into a
single strategy in Section 4 below.

3.2 Anomaly Base Rate
Here is how we use this data to estimate the anomaly base rate. Our goal is to mirror the process
by which researchers implicitly convert their past experience with other variables in the anomaly zoo
into a prior.

Variable-Specific Estimates. We start by creating separate variable-specific estimates for
σ2 using each variable in the anomaly zoo as of month t. For each variable i = 1, . . . , It, we solve
the optimization problem outlined in Proposition 2.2 in each month t such that i ∈ It. Table 3
provides summary statistics describing these variable-specific estimates for the prior variance, v̂2

i,t.
The sparkline plots represent the time series for each variable i = 1, . . . , 85 on a common scale,
0% < v̂i,t < 6%. Every time series ends in June 2015, so shorter sparkline plots correspond to
variables that were discovered later in our sample period.

Our goal in showing these sparkline plots is not to give evidence that any one predictor is
‘significant’. Rather, the aim is to show that predictor strengths were drawn from a common
distribution. Variables in our sample are constructed in very different ways using entirely different
datasets—e.g., compare Deprec/PP&E and Ret, 6-1 in the top two rows of the center panel of Tables
2 and 3. Nevertheless, notice that these two variables generate similar point estimates for v̂2

i,t each
month. And, this is true even though, when you look at Table 2, the β̂i,t time series for each of
these variables is very different. Trading on Deprec/PP&E and Ret, 6-1 clearly yields a very different
pattern of realized returns, and yet the estimated v̂2

i,t implied by each variable is quite similar.
We next use the time series of prior-variance estimates associated with each variable to generate

out-of-sample one-month-ahead forecasts. After all, you want to convert your past experience into a
prior for future use. So, to make a forecast for the ith variable in month t, we study the 60-month
immediately prior to month t, {t− 60, . . . , t− 1}. We denote the resulting one-month-ahead
forecasted value for month t by v̄2

i,t to distinguish it from the in-sample estimates. We begin making
forecasts of the prior volatility implied by the ith variable only after we have observed 60 months of
post-publication data to alleviate the publication bias. e.g., for the rolling-CAPM-beta (row 1 in
Table 1a), the first forecast is for month t = Jun1978. We know that prior to publication the
estimated β̂i’s are a combination of both the true slope coefficient β?i and the effects of publication
bias. By only using post-publication observations to forecast v̄2

i,t, we avoid this problem.
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#Obs Avg Sd 1% 25% 50% 75% 99%

446 2.19 1.43 0.57 1.16 1.82 2.69 7.30

Table 4. Aggregate v̄2
t . Summary statistics describing the sample average of the rolling

one-month-ahead forecast of prior variance, v̄2
t . We separately compute in-sample estimates for

the v̂2
i,t associated with each variable i = 1, . . . , It in each month as described in Proposition 2.2.

Then, we make an out-of-sample one-month-ahead forecast, v̄2
i,t, by fitting an AR(3) model to

months {t− 60, . . . , t− 1}. Finally, we average these forecasts to compute v̄2
t as in Equation

(26). Units: %2 per month. Sample Period: June 1978 to June 2015. Sparkline Plot: aggregate
time series corresponding to Figure 1 in miniature.

To make each forecast, we fit an AR(3) model to these 60 observations prior to month t:

v̂2
i,t′ = ǎi +∑3

`=1 b̌i,` · v̂2
i,t′−` + ěi,t′ for months t′ = (t− 60), . . . , (t− 1). (24)

ǎi and {b̌i,`}`=1,2,3 denote the coefficients associated with the ith variable, and ěi,t′ represents the
regression residual in month t′. Note that these coefficients will be different for each forecast date t;
we have just suppressed the t subscripts for clarity. We then compute one-month-ahead forecasts for
the prior variance in month t by applying these estimated coefficients to the final three months of
data prior to month t:

v̄2
i,t

def= Et−1[v̂2
i,t] = ǎi +∑3

`=1 b̌i,` · v̂2
i,t−`. (25)

We use an AR(3) forecasting model in our primary analysis for convenience. Our results are robust
to using different numbers of lags as we show in Table D2 of Appendix D. The precise choice of
forecasting model is not key to our findings.

Combining Results. The anomaly zoo represents a large data set of parallel situations, one
for each variable in the anomaly zoo as of month t, i = 1, . . . , It. The idea behind empirical-Bayes
methods is that you can combine the signal about σ2 produced by each of these variables to
generate a more precise forecast:

v̄2
t

def= 1
It
·∑i∈It v̄

2
i,t. (26)

This combined forecast, v̄2
t , represents your best guess about which prior variance of predictor

strengths to use when evaluating variables in month t—i.e., your best guess about the true value σ2

to use in Equation (6)—based on your past experience with It other variables. So, as the number of
variables in the anomaly zoo grows, we will be getting more and more signals about the anomaly
base rate that we should be using going forward. By analogy, a seasoned researcher who has seen
many variables come and go will have more signals with which to inform his beliefs than a junior
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researcher with less experience.
To give a sense of the prior beliefs suggested by the data, Table 4 provides summary statistics

describing this combined forecast each month, v̄2
t , and Figure 1 plots the v̄2

t time-series. The yearly
average forecasted value for the prior variance peaked in the year 2000 at 1

12 ·
∑Dec‘00

Jan‘00 v̄
2
t = 5.89,

and it reached its low point in 2015 at 1
12 ·

∑Dec‘15
Jan‘15 v̄

2
t = 0.60. While Figure 1 reveals a large spike in

v̄2
t at the time of the DotCom crash, this variable is not just a crash indicator. For example, note
that there is no spike in prior variance around the 1987 crash. We estimate that v̄2

Oct87 = 1.53,
which is much lower than the average value over the entire sample period, 2.19.

Relaxing the independence assumption will only affect the precision of our estimates for σ2. To
see why, note that Proposition 2.2 says that E[v̂2

i ] = σ2 for any i ∈ It. The most extreme way to
violate the assumption of independent draws for β?i in Equation (6) would be to assume that the
realized values of β?i are the same for all i ∈ It. In this extreme case, we would effectively only have
one signal about σ2. But, we could still use this lone draw, v̂2

1 = v̂2
2 = · · · = v̂2

It , as a signal about
σ2. It would just be a much noisier signal. When we analyze trading-strategy performance in the
following section, we will focus our attention on the sample period starting in January 1990 to
minimize this concern.

Macroeconomic Correlations. Of course, there are numerous macroeconomic variables
that forecast returns. And, in particular, there is a well-known relationship between expected
returns and both realized variance and uncertainty. So, it is important to make sure that, when we
estimate v̄2

t , we are not just repackaging and rebranding some existing variable. We consider
data on six different alternative variables: the level of the VIX index, realized volatility, the
value-weighted market return, log growth rate of seasonally adjusted GDP, the term spread, and the
NBER recession indicator. Table 5 provides summary statistics for each of these macroeconomic
variables. Note that we do not have data on the VIX or the term spread for our entire sample
period. In particular, our data on the VIX begins in January 1990.

We regress our forecasted v̄2
t in month t on lagged values v̄2

t−1, v̄2
t−2, and v̄2

t−3 as well as values
of these other macroeconomic variables using the following specification:

v̄2
t = â+∑3

`=1 b̂` · v̄2
t−` + ĉ>Zt + êt. (27)

Zt denotes a vector of macroeconomic variables in month t.
Table 6 reports the results of these regression specifications. Each column reports the results of

a separate regression. The table reveals that, while our forecasts for the prior variance are
sometimes related to well-known macroeconomic variables, such as the VIX, they are certainly not
subsumed by them. e.g., the three lags of v̄2

t explain 62.9% of the variation in column (2) whereas
the VIX explains only 2.4% of the variation in column (3). Moreover, once other macroeconomic
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VIX t RVol t RMkt,t dGDP t tSpd t Rcsnt
(1) (2) (3) (4) (5) (6)

Avg 19.89 14.47 1.02 1.41 1.81 0.13
Sd 7.59 8.70 4.48 0.89 1.15 0.33

Start Jan‘90 Jun‘78 Jun‘78 Jun‘78 Jan‘82 Jun‘78
#Obs 306 446 446 446 402 446

Table 5. Macroeconomic Variables. Summary statistics for macroeconomic forecasting
variables. VIX t: level of the VIX index; Jan 1990 to Jun 2015. RVol t: realized volatility on
value-weighted market index; Jun 1978 to Jun 2015. RMkt,t: return on the CRSP value-weighted
market index; Jun 1978 to Jun 2015. dGDP t: log growth rate of seasonally adjusted GDP; Jun
1978 to Jun 2015. tSpd t: the term spread; Jan 1982 to Jun 2015. Rcsnt: NBER indicator for
whether a recession is taking place; Jun 1978 to Jun 2015.

variables are included, the VIX is no longer a significant predictor of prior variance. In other words,
v̄2
t is not just a proxy for the VIX.

In the next section, we are going to incorporate the volatility of prior beliefs into portfolio
selection.

4 Trading Strategy
Financial economists implicitly turn their past experience with other variables in the anomaly zoo
into prior beliefs based on their knowledge of the research process. To make use of this insight, we
employ a simple statistical framework that combines empirical-Bayes methods and the Bayesian
interpretation of penalized-regression procedures. In this section, we study trading-strategy
performance to demonstrate that our estimates of the anomaly base rate still produces actionable
estimates in spite of their transparent simplicity.

4.1 Portfolio Construction
We start with a benchmark strategy that explicitly does not account for the anomaly base rate. This
benchmark strategy assumes that any amount of predictability is equally likely ex ante, σ2 =∞.
We then adjust this benchmark strategy to account for the anomaly base rate, discarding
implausibly strong predictors given the forecasted prior variance.

Variable-Specific Returns. The realized return to a zero-cost long-short portfolio associated
with the ith variable in month t, Ri,t, is just the estimate for β̂i,t in that month:

Ri,t
def= β̂i,t = 1

Nt
·∑n (Rn,t − µ̂t) ·Xn,i,t−1. (28)
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Dependent Variable: v̄2
t

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Const 0.37??? 0.35??? 1.38??? 1.82??? 2.18??? 2.00??? 2.05??? 2.15??? 0.79?? 0.74 0.37 0.33
(0.08) (0.10) (0.26) (0.13) (0.07) (0.13) (0.14) (0.07) (0.40) (0.47) (0.25) (0.29)

v̄2
t−1 0.65??? 0.69??? 0.68??? 0.68???

(0.05) (0.06) (0.06) (0.06)

v̄2
t−2 0.08 0.04 0.04 0.04

(0.06) (0.07) (0.07) (0.07)

v̄2
t−3 0.10?? 0.10? 0.11? 0.11?

(0.05) (0.06) (0.06) (0.06)

VIX t 0.04??? 0.01 0.00
(0.01) (0.03) (0.02)

RVol t 0.02??? 0.05??? 0.05?? 0.01? 0.01
(0.01) (0.01) (0.02) (0.01) (0.01)

RMkt,t 0.00 0.02 0.02 0.02 0.02
(0.02) (0.02) (0.02) (0.01) (0.01)

dGDP t 0.13 0.44?? 0.44?? −0.10 −0.10
(0.08) (0.19) (0.19) (0.12) (0.12)

tSpd t 0.05 −0.01 −0.01 −0.07 −0.07
(0.06) (0.08) (0.08) (0.04) (0.05)

Rcsnt 0.26 0.13 0.11 −0.21 −0.22
(0.20) (0.37) (0.37) (0.23) (0.23)

Adj R2 61.0% 62.9% 2.4% 2.0% −0.2% 0.4% −0.1% 0.2% 4.4% 4.1% 63.4% 63.2%
Start Jun‘78 Jan‘90 Jan‘90 Jun‘78 Jun‘78 Jun‘78 Jan‘82 Jun‘78 Jan‘90 Jan‘90 Jan‘90 Jan‘90
#Obs 443 306 306 443 443 443 402 443 306 306 306 306

Table 6. Macroeconomic Correlations. Relationship between the forecasted v̄2
t in

month t and macroeconomic variables. VIX t: level of the VIX index; Jan 1990 to Jun 2015.
RVol t: realized volatility on value-weighted market index; Jun 1978 to Jun 2015. RMkt,t: return
on the CRSP value-weighted market index; Jun 1978 to Jun 2015. dGDP t: log growth rate of
seasonally adjusted GDP; Jun 1978 to Jun 2015. tSpd t: the term spread; Jan 1982 to Jun 2015.
Rcsnt: NBER indicator for whether a recession is taking place; Jun 1978 to Jun 2015. Each
column represents results of a separate regression as described in Equation (27). Numbers in
parentheses are Newey-West standard errors. Significance: ? = 10%, ?? = 5%, and ??? = 1%
under the assumption of a single test.
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In Equation (28), µ̂t denotes the mean excess return of all stocks in month t, (Nt + 1)
denotes the number of stocks in month t, and the ith variable has been normalized to have
zero mean and unit variance, 0 = Ê[Xn,i,t−1] = 1

Nt+1 ·
∑
n Xn,i,t−1 and 1 = V̂ar[Xn,i,t−1] =

1
Nt
·∑n (Xn,i,t−1 − Ê[Xn,i,t−1])2.
All of our results are robust to computing Ri,t by ranking stocks based on Xn,i,t−1 and forming

top/bottom 30% long-short portfolios à la Fama and French (1993) and Jegadeesh and Titman
(1993). We compute variable-specific returns using OLS weights so that our empirical analysis
exactly matches our statistical framework. This choice is not essential to our results.

To account for the fact that some variable represent contrarian strategies—e.g., ‘Ret, 1-0 ’,
which represents short-run reversals and delivers negative returns on average—we define an
indicator variable directioni ∈ {−1, + 1} that flips the sign of the benchmark portfolio’s holdings
for all contrarian strategies. For example, since there are return reversals at the one-month
horizon and momentum at the 12-month horizon, we have that directionRet, 1-0 = −1 while
directionRet, 12-1 = +1.We define this direction indicator only once at the time the variable is
discovered and hence, it does not rely on any future information.

To make a one-month-ahead forecasts for these returns, we first fit an AR(3) model to the
previous five years of monthly data on β̂i,t:

β̂i,t′ = ǎi +∑3
`=1 b̌i,` · β̂i,t′−` + ěi,t′ for months t′ = (t− 60), . . . , (t− 1). (29)

ǎi and {b̌i,`}`=1,2,3 denote estimated coefficients, and ěi,t′ represents the regression residual in
month t′. Note that these coefficients will be different for each forecast date t; we have just
suppressed the t subscripts for clarity.

We then apply these estimated coefficients to the final three months of data prior to month t:

β̄i,t
def= Et−1[β̂i,t] = ǎi +∑3

`=1 b̌i,` · β̂i,t−`. (30)

If the resulting forecast is very different from zero, |β̄i,t| � 0, then we say that the ith variable is a
strong signal. By contrast, if |β̄i,t| ≈ 0, then we say it is a weak signal.

The choice of forecasting model is not essential to our results. Just like with our one-month-ahead
forecasts for prior variance, we use an AR(3) forecasting model out of convenience. Our results are
robust to using alternative number of lags as shown in Table D2 of Appendix D.

Benchmark Strategy. Our benchmark strategy only uses these one-month-ahead forecasts
to decide whether or not to invest in the ith variable in month t. It explicitly does not take into
consideration any information about the anomaly base rate. It only looks at the data; it does not
consider the ex ante probability that the ith variable is a tradable anomaly.
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Let At denote the set of ‘active’ predictors for the benchmark strategy in month t:

At
def=
{
i ∈ It :

∣∣∣β̄i,t∣∣∣ > threshold
}
. (31)

This is the collection of previously discovered anomalies whose past performance exceeds some
minimum threshold. In the analysis below, we are going to set the minimum performance threshold
to 1% per month. The solid blue line in the left panel of Figure 6 reports the number of active
predictors each month when using this 1%-per-month threshold level.

The benchmark strategy holds an equal-weighted position in all active predictors, i ∈ At, in
month t. Its raw returns are given by:

RAt,t
def= 1
|At| ·

∑
i∈At Ri,t · directioni. (32)

You can also compute an analogous ‘net’ return:

1
|At| ·

∑
i∈At (Ri,t · directioni − threshold). (33)

We will study both kinds of returns in various contexts in the analysis below. If a strategy has
positive raw returns but negative net returns, then it is not something that is tradable. The strategy
is generating phantom returns that will likely disappear once you start trading.

Base-Rate Adjustment. Imagine you forecasted a large positive realized return in month t
for the ith variable, |β̄i,t| � 0. If the forecasted value of v̄2

i′,t was small for all other variables i′ 6= i

in month t and the realized returns for all variables i = 1, . . . , It were drawn from a common
distribution, then the ith variable’s true magnitude is likely small as well, |β?i,t| ≈ 0. So, even
though your forecasted value represents a strong signal, you should still be reluctant to trade on it.

But, exactly how reluctant? We use the statistical framework outlined in Section 2 to answer
this question. Your forecasted return for the ith variable is a noisy signal about the true realized
return next month, β̄i,t ∼ Normal[β?i,t, N · se2

i ], where se2
i > 0 represents the typical size of your

forecast error for the ith variable. So, if realized returns for each variable are drawn from a normal
distribution each month with prior variance σ2 > 0, β?i,t

iid∼ Normal[0, σ2], then your best guess
about the ith variable’s realized return in month t would be:

E[Ri,t|β̄i,t, se2
i , σ

2] =
(
1 + se2

i /σ
2
)−1
× β̄i,t. (34)

This formula is just an application Bayesian-normal learning. It is the same as the formula for the
Ridge-regression slope coefficient in Equation (11). And, you could use it to revise your forecast for
next month’s realized return if you also had forecasts for se2

i and σ2.
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Forecasting se2
i in month t is easy enough. You can fit an AR(3) model to the squared residuals

from the β̂i,t forecasting regression in Equation (29):

ě2
i,t′ = η̂i +∑3

`=1 θ̂i,` · ě2
i,t′−` + ω̂i,t′ for months t′ = (t− 60), . . . , (t− 1). (35)

η̂i and {θ̂i,`}`=1,2,3 denote coefficients associated with the ith variable when forecasting the value
for month t, and ω̂i,t′ represents the regression residual in month t′. Note that these coefficients will
be different for each forecast date t; we have just suppressed the t subscripts for clarity.

You can then forecast the standard error in the following month by applying these estimated
coefficients to the final three months of data prior to month t:

s̄e2
i,t

def= Et−1[ě2
i,t] = η̂i +∑3

`=1 θ̂i,` · ě2
i,t−`. (36)

Again, forecasts are robust to using different numbers of lags and alternative forecasting models.
Computing a forecast of prior variance for use when evaluating the ith variable in month t

requires a bit more subtlety. You cannot use data about the ith variable to inform the prior you use
when evaluating the ith variable. That would be circular logic. So, when adjusting the forecast of
the ith variable, we compute the average prior-variance forecast using all other variables in the
anomaly zoo besides, i′ 6= i:

v̄2
¬i,t

def= 1
It−1 ·

∑
i′ 6=i v̄

2
i′,t. (37)

This means that the forecasted return associated with each variable i will be adjusted by a slightly
different prior variance:

β̄ v̄
2

i,t
def=
(
1 + s̄e2

i,t/v̄
2
¬i,t

)−1
× β̄i,t. (38)

It also means that you cannot calculate the base-rate adjustment unless you have past experience
with at least two other variables. In other words, you need It ≥ 3.

Ideally though, you would have many more than two other variables. For this reason, even
though our data sample starts in May 1973, all of the trading-strategy results in this section will
compare the benchmark strategy to a base-rate-adjusted strategy using data starting in January
1990 when there are at least It ≥ 20 variables in the anomaly zoo as shown in Table 1a.

Economic Interpretation. The benchmark strategy in Equation (32) does not explicitly
use any information about σ2 or how this prior variance evolves over time. But, that does not mean
it is agnostic about this quantity. In fact, the benchmark strategy implicitly makes a very
strong assumption about the anomaly base rate—namely, it assumes any level of cross-sectional
predictability is just as likely as the next ex ante. The way this assumption shows up mathematically
is as follows:

lim
σ2→∞

β̄σ
2

i,t = β̄i,t. (39)
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Figure 6. Number of Active Predictors. Black region,Av̄2
t : number of variables included

in the base-rate-adjusted strategy in month t. Blue line, At: number of variables included in the
benchmark strategy in month t. Red shaded region, At \ Av̄

2
t : number of variables in the

benchmark strategy that were discarded due to base-rate considerations in month t. Height of
this region is the same in both panels. Sample Period: Jan 1990 to Jun 2015.

Put differently, in order for it to make sense to completely ignore your prior beliefs and only pay
attention to the data presented by today’s seminar speaker, your prior beliefs must have been
completely uninformative. You have to take a stand on your prior beliefs in order to form posteriors.
You cannot punt on this issue. Ignoring the problem is taking a really strong position.

By contrast, if your past experience tells you that there are never any tradable anomalies, then
you should discard all evidence to the contrary:

lim
σ2→0

β̄σ
2

i,t = 0. (40)

If σ2 = 0 exactly, then every past candidate predictor must have turned out to have no out-of-sample
predictive power. But, if you really believed that σ2 = 0, then you should not have even bothered
showing up to the seminar speaker’s talk today. Nothing he could have said would change your
mind. The talk would be a wasted hour for you. This is the sense in which believing that σ2 = 0 is
equivalent to having dogmatic priors.

Base-Rate-Adjusted Strategy. We modify the benchmark trading strategy to account for
changes in the prevailing anomaly base rate by choosing which variables to invest in based on β̄ v̄2

i,t

rather than β̄i,t. Let Av̄
2
t denote the set of active predictors used by the base-rate-adjusted strategy

in month t:
Av̄2

t
def=
{
i ∈ It :

∣∣∣β̄ v̄2

i,t

∣∣∣ > threshold
}
. (41)

The solid black region in the left panel of Figure 6 reports the number of active predictors each
month for the base-rate-adjusted strategy when the threshold is set to 1% per month. Because
the base-rate-adjusted strategy is revising the benchmark return forecasts toward zero, the
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base-rate-adjusted strategy will never include more active predictors than the benchmark strategy.
Let RAv̄2

t ,t
denote the gross realized return of the base-rate-adjusted strategy at time t:

RAv̄2
t ,t

def= 1
|Av̄2
t |
·∑

i∈Av̄2
t
Ri,t · directioni. (42)

We also calculate an analogous net return for this strategy:

1
|Av̄2
t |
·∑

i∈Av̄2
t

(Ri,t · directioni − threshold). (43)

These return calculations are the same as for the benchmark strategy, just using Av̄2
t rather than At.

Let At \ Av̄
2
t denote the set of variables discarded due to base-rate considerations:

At \ Av̄
2

t
def=
{
i ∈ It :

∣∣∣β̄i,t∣∣∣ > threshold >
∣∣∣β̄ v̄2

i,t

∣∣∣ }. (44)

We plot the number of variables in this discarded set in the right panel of Figure 6. This discarded
set of variables represents a clean laboratory for studying the effects of incorporating the anomaly
base rate. These variables look like strong signals when considered only on their own merits, but
they should turn out to be bad investment ideas after incorporating the right prior beliefs. We will
return to this idea when we evaluate trading-strategy performance below.

No Future Information. We want to emphasize that there is no future information being
used to construct either the benchmark strategy or the base-rate-adjusted strategy. These trading
strategies are both investable. Each takes the set of candidate predictors that have been previously
published, and decides which of these variables is worth trading on using the past five years of data.
Nothing about the construction of either portfolio requires knowledge about future returns.

Variable Selection. Before we get to these results, it is helpful to get a sense of which
variables get included in the benchmark strategy, which get included in the base-rate-adjusted
strategy, and which get discarded by the base-rate-adjusted strategy. Table 7 presents a detailed
account of variable-specific usage rates. There are three panels. Within each panel, a row
corresponds to a single variable just like in Tables 2 and 3. The column labeled At reports the
fraction of all post-discovery months that the ith variable was held in the benchmark strategy. The
column labeled Av̄2

t reports the same statistic but for the base-rate-adjusted strategy.
The sparkline plots then report precisely which months each variable was held by each strategy.

The x-axis in each plot represents time in months. Every time series ends in June 2015. So, variables
discovered later in our sample period will have shorter sparkline plots. Months in which the ith
variable was held by the benchmark strategy are denoted by vertical blue bars on the bottom half of
each sparkline plot. Months in which the ith variable was held by the base-rate-adjusted strategy
are denoted by vertical black bars on the top half of each sparkline plot. And, months in which the
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ith variable was discarded by the base-rate-adjusted strategy are denoted by vertical red bars on the
top half of each sparkline plot. The color scheme matches the one used in Figure 6.

These sparkline plots show more detailed patterns in variable usage. For example, short-run
reversals (Ret, 1-0; left panel near bottom) was selected by the benchmark strategy in 77% of
months. And, as a result, the bottom half of its sparkline plot is mostly blue. The base-rate-adjusted
strategy only selected this variable in 44% of months, though. So, the top half of the sparkline plot
is split almost evenly between black bars (included) and red bars (discarded). The sparkline plot
further indicates that this variable was more likely to be discarded by the base-rate-adjusted
strategy later in our sample period.

4.2 Realized Returns
We now examine the realized returns of these trading strategies and find that adjusting the
benchmark strategy for the prevailing anomaly base rate significantly boosts its performance. Our
aim is to demonstrate that our simple statistical framework is able to estimate an economically
important quantity—namely, the anomaly base rate—with an actionable degree of precision.
Showing that it is possible to trade on this information is one way of doing this, which is also of
great practical importance. Just think about hitting Ctrl+H and replacing ‘seminar speaker’ with
‘quant researcher’ on the first two pages.

Active Predictors. We begin by comparing the performance of the active predictors that
were selected by each strategy to the inactive predictors that were not. We do this by regressing
each variable’s realized returns in month t, Ri,t · directioni, on an indicator variable for whether the
ith variable was included in a given strategy. For example, for the benchmark strategy, this means
running the following regression:

Ri,t · directioni = â+ b̂ · 1
[
i ∈ At

]
+ ĉ · s̄e2

i,t + êi,t. (45)

The regression uses data on each variable in the anomaly zoo i = 1, . . . , It as of month
t = Jan‘90, . . . , Jun‘15. We start in January 1990 to ensure that the anomaly zoo is sufficiently
large for us to form an accurate estimate for v̄2

¬i,t. Our results are robust to using alternative start
dates. Column (1) in Table 8 shows that active predictors which were selected by the benchmark
strategy have 1.56% per month higher excess returns than inactive predictors.

Column (2) displays analogous results for the base-rate-adjusted strategy:

Ri,t · directioni = â+ b̂ · 1
[
i ∈ Av̄2

t

]
+ ĉ · s̄e2

i,t + êi,t. (46)

Active predictors selected by the base-rate-adjusted strategy have 1.83% per month higher excess
returns. But, this is not really a fair comparison. The base-rate-adjusted strategy is trading on
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At Av̄2
t At Av̄2

t At Av̄2
t

Beta 0.40 0.11 Deprc/PP&E 0.47 0.27 ε%∆Mcap 0.46 0.30
BetaSq 0.41 0.12 Ret, 6-1 0.16 0.06 NetExtnlFin/Assets 0.03 0.03
IdioVolCAPM 0.10 0.04 %∆Sales 0.69 0.53 DailyBeta 0.36 0.09
Earn/Share 0.67 0.26 OpAccr 0.29 0.10 NetPO/Price 0.47 0.21
Debt/Price 0.37 0.23 CapitalTOver 0.51 0.40 PO/Price 0.48 0.30
Divd/Price 0.54 0.28 RetOnEquity 0.73 0.45 NetPO 0.09 0.04
Mcap 0.77 0.59 KaplanZingales 0.24 0.18 RetOnInvstCap 0.51 0.29
Earn/Price 0.61 0.31 %∆[∆Sales/∆Invtry] 0.15 0.11 %∆Shares 0.11 0.08
Ret, 36-12 0.75 0.56 %∆[∆Sales/∆Recv] 0.29 0.23 ProfMgn 0.10 0.07
AvgSpread 0.79 0.55 %∆[∆Sales/∆XG&A] 0.23 0.21 AdjProfMgn 0.14 0.06
Assets/Mcap 0.19 0.10 %∆[∆GrMgn/∆Sales] 0.18 0.13 RetOnOpAssets 0.29 0.15
Levrg 0.22 0.12 LagTOver 0.41 0.16 AssetTOver 0.42 0.35
Levrg/Price 0.37 0.23 Adj[BkVal/Mcap] 0.74 0.66 AdjAssets 0.64 0.27
Sales/Cash 0.42 0.22 AdjMcap 0.68 0.59 %∆InvmtX 0.05 0.01
LtCF 0.32 0.15 SdTOver 0.41 0.06 %∆Invmt 0.28 0.18
CurrRatio 0.37 0.33 AdvertRate/Ret 0.72 0.49 ∆AdjShares 0.78 0.65
%∆CurrRatio 0.34 0.29 R&D/Mcap 0.06 0.02 RetOnCash 0.26 0.17
%∆QuickRatio 0.14 0.12 R&D/Sales 0.23 0.03 Tangibility 0.17 0.07
%∆[Sales/Invtry] 0.29 0.15 Advert/Mcap 0.84 0.77 ∆AdjTOver 0.16 0.02
QuickRatio 0.26 0.09 ∆Invtry/Assets 0.46 0.35 UnexplVlm 0.88 0.83
Sales/Invtry 0.25 0.17 OpCF/Price 0.20 0.05 RetOnAssets 0.68 0.44
Sales/Recv 0.34 0.23 Invmt/Lag[AvgInvmt] 0.20 0.09 OpLevrg 0.72 0.46
Ret, 1-0 0.77 0.44 NetOpAssets/Sales 0.17 0.06 MaxRet 0.53 0.25
Ret, 12-1 0.34 0.14 %∆BkVal 0.68 0.54 FreeCF 0.68 0.34
BkVal 0.11 0.08 %∆LtDebt 0.36 0.25 R&Dcapital 0.22 0.02
MonthlyMcap 0.85 0.64 Price-52WkHi 0.61 0.31 %∆Invtry 0.00 0.00
Sales/Price 0.71 0.48 IdioVolFF93 0.16 0.05 Ret, 12-6 0.15 0.05
%∆[Deprc/PP&E] 0.05 0.04 TotVol 0.15 0.08 CashHldgs 0.41 0.15
D&A/Assets 0.68 0.49

Table 7. Variable Selection. At: fraction of all post-discovery months that a variable was
held by benchmark strategy. Av̄2

t : same statistic for the base-rate-adjusted strategy. Sparkline
plots: x-axis is time in months. All time series end in June 2015. Variables discovered later have
shorter sparkline plots. Blue bar, bottom half: variable is held by benchmark strategy. Black bar,
top half: variable is held by base-rate-adjusted strategy. Red bar, top half: variable was
discarded by base-rate-adjusted strategy. Sample period: January 1990 to June 2015.
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return forecasts that have been shrunk toward zero. So, to be included in the base-rate-adjusted
strategy, a variable had to start out with a more extreme return forecast.

To account for this fact, we add the magnitude of each variable’s return forecast, |β̄i,t|, to the
previous regression specification:

Ri,t · directioni = â+ b̂ · 1
[
i ∈ Av̄2

t

]
+ ĉ · s̄e2

i,t + d̂ · |β̄i,t|+ êi,t. (47)

Column (3) reports an even larger increase in performance, b̂ = 2.02% per month, after controlling
for the scale of the ith variable’s return forecast. Thus, the boost in performance that comes with
adjusting for the prevailing anomaly base rate cannot be explained by the base-rate-adjusted
strategy simply selecting more extreme predictors.

Our ideal experiment would involve comparing two variables with the same out-of-sample return
forecasts in two different base-rate regimes, one with σ2 � 0 and the other with σ2 ≈ 0. In this
situation, we should find that the variable in the σ2 ≈ 0 regime consistently under-performs the
otherwise identical variable in the σ2 � 0 regime.

We approximate this ideal experiment by estimating the following regression specification:

Ri,t · directioni = â+ b̂1 · 1
[
i ∈ Av̄2

t

]
+ b̂2 · 1

[
i ∈ At \ Av̄

2

t

]
+ ĉ · s̄e2

i,t + d̂ · |β̄i,t|+ êi,t.
(48)

This specification controls for the magnitude and precision of the one-month-ahead return forecasts,
|β̄i,t| and s̄e2

i,t. So, the coefficient on 1
[
i ∈ Av̄2

t

]
captures the excess returns to trading on a strong

cross-sectional predictor in the high base-rate regime. Whereas, the coefficient on 1
[
i ∈ At \ Av̄

2
t

]
reflects the excess returns to trading on that exact same cross-sectional predictor in the low
base-rate regime—i.e., in a regime where σ2 ≈ 0 leading to lots of shrinkage.

Column (4) displays the results for this regression specification. We find that, for a given level of
in-sample signal strength, the ith variable is a much better forecasting tool during the high
base-rate regime: b̂1 = 2.20% per month vs. b̂2 = 0.85% per month. The difference between these
coefficient estimates is statistically significant at the 1% level. And, they suggest an economically
large difference in trading-strategy performance. If the prevailing anomaly base rate in month t was
high enough such that β̄ v̄2

i,t > 1%, then the point estimates in column (4) of Table 8 suggest that
trading on the ith variable would result in a monthly return of 2.20%. By contrast, if the prevailing
anomaly base rate in month t was such that β̄ v̄2

i,t < 1%, then trading on the ith variable would only
result in a monthly return of 0.85%. While still positive, note that this predicted value of 0.85% per
month is no longer large enough to cover the 1%-per-month minimum return threshold. Thus, we
have clear evidence that trading on the same variable in two different base-rate regimes leads to two
very different outcomes.
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Dependent Variable: Ri,t · directioni
(1) (2) (3) (4) (5) (6)

Const −0.03 0.13 0.23 0.07 0.22 0.20
(0.18) (0.18) (0.13) (0.14) (0.13) (0.13)

1
[
i ∈ At

]
1.56???
(0.23)

1
[
i ∈ Av̄2

t

]
1.83??? 2.02??? 2.20???
(0.25) (0.32) (0.34)

1
[
i ∈ At \ Av̄

2
t

]
0.85??
(0.17)

1
[
i ∈ AE[v̄2]

t

]
1.67???
(0.30)

1
[
i ∈ Av̄2

t ∩ A
E[v̄2]
t

]
2.05???
(0.33)

1
[
i ∈ Av̄2

t \ A
E[v̄2]
t

]
2.18??
(0.83)

1
[
i ∈ AE[v̄2]

t \ Av̄2
t

]
0.48
(0.27)

s̄e2
i,t 0.01 0.02 0.03? 0.02? 0.03? 0.03?

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

|β̄i,t| −0.08 −0.08 −0.06 −0.08
(0.07) (0.07) (0.07) (0.07)

Adj. R2 0.98% 1.05% 1.12% 1.26% 0.86% 1.13%
#Obs 15,913 15,913 15,913 15,913 15,913 15,913

Table 8. Active Predictors. Relationship between the realized returns to a zero-cost
long-short portfolio based on the ith variable, Ri,t · directioni, and portfolio inclusion.
Each column reports results for a separate regression involving 15,913 variable×month
observations—one observation for each variable in the anomaly zoo i = 1, . . . , It as of
month t = Jan‘90, . . . , Jun‘15. 1[i ∈ At]: indicator variable for the ith variable’s inclusion in
the benchmark strategy in month t. 1[i ∈ Av̄2

t ]: indicator variable for the ith variable’s
inclusion in the base-rate-adjusted strategy in month t. 1[i ∈ At \ Av̄

2
t ]: indicator variable

for the ith variable’s inclusion in the benchmark strategy but not the base-rate-adjusted
strategy in month t. 1[i ∈ AE[v̄2]

t ]: indicator variable for the ith variable’s inclusion in the
average base-rate-adjusted strategy in month t. 1[i ∈ Av̄2

t ∩ A
E[v̄2]
t ]: indicator variable for

the ith variable’s inclusion in both the true base-rate-adjusted strategy and the average
base-rate-adjusted strategy in month t. 1[i ∈ Av̄2

t \ A
E[v̄2]
t ]: indicator variable for the ith

variable’s inclusion in the true base-rate-adjusted strategy but not the average base-rate-adjusted
strategy in month t. 1[i ∈ AE[v̄2]

t \ Av̄2
t ]: indicator variable for the ith variable’s inclusion in the

average base-rate-adjusted strategy but not the true base-rate-adjusted strategy in month t.
|β̄i,t|: absolute value of one-month-ahead return forecast for ith variable in month t. s̄e2

i,t:
variance of one-month-ahead return forecast for ith variable in month t. Numbers in parentheses
are standard errors clustered by variable. Significance: ? = 10%, ?? = 5%, and ??? = 1% under
the assumption of a single test.
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Base Rate Or Just Shrinkage? The base-rate-adjusted strategy improves performance by
acting on return forecasts that have been shrunk toward zero. We motivated this shrinkage in
Section 2 as a way of incorporating information about the prevailing anomaly base rate. But, so far
we have not seen any evidence of this link in the data. Put differently, perhaps any sort of shrinkage
will boost performance regardless of how it is motivated?

To address this concern, column (5) in Table 8 shows results for a version of the regression
specification in Equation (47) using the average level of prior variance, E[v̄2

t ] = 2.19, rather than
the prevailing value of v̄2

t to construct the base-rate-adjusted portfolio:

Ri,t · directioni = â+ b̂ · 1
[
i ∈ AE[v̄2]

t

]
+ ĉ · s̄e2

i,t + d̂ · |β̄i,t|+ êi,t. (49)

Using the average level of prior variance mutes the effect of adjusting for the anomaly base rate,
b̂ = 1.67% per month rather than 1.83% as in column (3), which suggests that there is more going
on than just shrinkage. The time-series variation in the anomaly base rate matters.

But, it is possible to construct an even sharper test by exploiting this time-series variation.
When the anomaly base rate is higher than its sample average, there are going to be variables that
are strong enough to be included in the true base-rate-adjusted portfolio but not in the average
base-rate-adjusted portfolio, 1

[
i ∈ Av̄2

t \ A
E[v̄2]
t

]
. The subsequent returns to trading on these

variables should look like the subsequent returns to trading on any other active predictor in the
base-rate-adjusted strategy. Conversely, when the anomaly base rate is lower than its sample
average, there are going to be variables that are strong enough to be included in the average
base-rate-adjusted portfolio but not in the true base-rate-adjusted portfolio, 1

[
i ∈ AE[v̄2]

t \ Av̄2
t

]
.

These variables should have subsequent returns that look very different.
And, consistent with this logic, when we run a version of the regression in Equation (47) where

we split the active set along these lines,

Ri,t · directioni = â+ b̂1 · 1
[
i ∈ Av̄2

t ∩ A
E[v̄2]
t

]
+ b̂2 · 1

[
i ∈ Av̄2

t \ A
E[v̄2]
t

]
+ b̂3 · 1

[
i ∈ AE[v̄2]

t \ Av̄2

t

]
+ ĉ · s̄e2

i,t + d̂ · |β̄i,t|+ êi,t,

(50)

this is exactly what we find. Column (6) in Table 8 shows that b̂2 = 2.18% per month while
b̂3 = 0.48% per month. This difference in coefficient estimates is statistically significant and
economically large, confirming that the success of the base-rate-adjusted strategy cannot be
replicated by a simple shrinkage-based approach.

Additional Results. In Appendix C, we report additional details about the performance of
the benchmark and base-rate-adjusted strategies. We plot the cumulative returns of each strategy
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(Figure C1). We present various performance metrics, such as Sharpe ratio and skewness, of each
strategy (Table C1). The base-rate-adjusted strategy has a substantially higher Sharpe ratio than the
benchmark strategy. But, the base-rate-adjusted strategy is not more negatively skewed. Moreover,
the active set associated with the base-rate-adjusted strategy, Av̄2

t , is no more likely to contain
high-turnover predictors than the active set associated with the benchmark strategy, At. This fact
suggests that the boost in performance coming from the base rate is not due to transaction costs.
We also show that the base-rate-adjusted strategy is not just loading on market risk (Table C2).

Finally, we motivated this paper by discussing the problem faced by a researcher who is trying
to evaluate statistical evidence concerning a new cross-sectional predictor. However, the trading
strategies discussed so far have held positions in both brand new and previously discovered variables.
e.g., it might invest based on a firm’s investment growth at any time on or after December 2004
when Titman et al. (2004) published the paper documenting the variable. So, maybe the improved
performance of the base-rate-adjusted strategy relative to the benchmark strategy is only due to
different positions in previously discovered variables? In Appendix Table C3, we show this is not the
case.

5 Conclusion
Evaluating evidence of cross-sectional predictability is hard. Today’s seminar speaker is presenting
evidence about how lagged values of some new variable, Xn, are positively related to subsequent
excess returns at the 1% level of statistical significance. In order to form the correct posterior beliefs
based on this evidence, you need to start out with the correct prior beliefs about Xn being a
tradable anomaly and then appropriately revise this prior based on the speaker’s statistically
significant results for β̂ > 0.

The existing academic literature contains hundreds of other variables that also seem to predict
the cross-section of expected returns. These variables are often based on entirely different data
sources and have little in common with one another economically. The existence of this so-called
‘anomaly zoo’ represents something of a crisis in the field of empirical asset pricing. Specifically, it
suggests that financial economists are not taking the effects of data mining into account when
revising their prior beliefs about each new variable Xn they encounter. One way to address this
problem is to demand a higher t-statistic cutoff when assessing statistical significance. Researchers
can and should be doing this when evaluating evidence of cross-sectional predictability.

But, that being said, it is important to remember that there is more to Bayesian inference than
choosing the right t-statistic. Anyone who walked into today’s seminar room with wildly inaccurate
priors is going to walk out of the seminar room with wildly inaccurate posteriors even if the speaker
correctly adjusts his empirical results for data mining. There is a fast growing literature on how to
adjust econometric techniques in light of widespread data mining. Yet, empirical asset pricing offers
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no useful suggestions about which prior beliefs to use when evaluating the next candidate predictor
you see. And, this is true in spite of the fact that, in practice, talks about new variables are often
dominated by the priors of particular audience members.

In this paper, we follow Winston Churchill’s advice about how one should “never let a good
crisis go to waste.” “Large data sets of parallel situations carry within them their own Bayesian
information (Efron and Hastie, 2016, p. 77)” about the appropriate prior. And, what is the anomaly
zoo if not a large data set of many parallel situations, one for each variable in the academic
literature that seems to predict the cross-section of expected returns? Your past experience with
other variables in the anomaly zoo (a few tradable anomalies and many more spurious predictors)
contains information about the efficacy of financial economists’ current research practices. And, in
the absence of an overarching theory of the market conditions responsible for cross-sectional return
predictability, you must have been using this information to inform your priors when walking into
the seminar room today.

We provide a simple statistical approach to operationalize this insight. Then, we use
trading-strategy performances to show that the anomaly-base-rate estimates produced by our simple
statistical approach are economically meaningful. We use numerical simulations to demonstrate that
our statistical approach can be extended in various ways. So, our hope is that, by clearly outlining
this important economic problem and providing a general statistical framework for solving it, we can
encourage future research on how to even better estimate the anomaly base rate and draw sharper
inference about cross-sectional return predictors.
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A Technical Appendix
Proof (Proposition 2.1). The result follows from properties of the normal distribution. If
z ∼ Normal[0, σ2], then for any ω > 0 we have that:

Pr[z > ω] = Pr[z < −ω]
= Φ[−ω/σ].

Thus, Pr[ anomi ] = Pr[ |β?i | > threshold ] = 2 ·Pr[ β?i < −threshold ] = 2 ·Φ[−threshold/σ ].

Derivation (Equation 11). Optimizing Equation (10) results in the first-order condition:

0 = − 2 · 1
N
·∑n

(
Rn − µ̂− β ·Xn,i

)
·Xn,i + 2 · λ · β

= − 1
N
·∑n (Rn − µ̂) ·Xn,i + β · 1

N
·∑nX

2
n,i + λ · β

= − β̂i + (1 + λ) · β.

Solving for β yields the desired result.

Derivation (Equation 16). Let Si[v2] denote the Ridge shrinkage when λi = ŝe2
i /v

2:

Si[v2] = v2/(v2 + ŝe2
i ).

The Ridge optimization problem can then be expressed as:

min
v2>0

{
E
[(
Rn − µ̂− Si[v2] · β̂i ·Xn,i

)2
] }

.

This optimization problem results in the following first-order condition:

0 = 2 · E
[(
Rn − µ̂− Si[v2] · β̂i ·Xn,i

)
·
(
S′i[v2] · β̂i ·Xn,i

)]
= 2 · S′i[v2] ·

(
β̂i · E[(Rn − µ̂) ·Xn,i]− Si[v2] · E[(β̂i ·Xn,i)2]

)
= 2 · S′i[v2] ·

(
β̂2
i − Si[v2] · β̂2

i

)
= 2 · S′i[v2] · (1− Si[v2]) · β̂2

i

= 2 · ŝe4
i

(v2+ŝe2
i )3 · β̂

2
i .

Taking the expectation with respect to realizations of the true slope coefficient yields:

0 = E
[

2 · ŝe4
i

(v2+ŝe2
i )3 · β̂

2
i

]
= 2 · ŝe4

i

(v2+ŝe2
i )3 · (σ

2 + ŝe2
i ).

The only way to satisfy this first-order condition is to choose v2 =∞.

Proof (Proposition 2.2). Suppose we add a correction term, Ci[v2], to the training error in

50



Equation (15) to undo this in-sample overfitting. The objective function would then become:

v̂2
i = arg min

v2>0

{
E
[(
Rn − µ̂− Si[v2] · β̂i ·Xn,i

)2
]

+ Ci[v2]
}
.

Our goal is to find a functional form for Ci[v2] that yields an unbiased estimate of E[v̂2
i ] = σ2.

Note that this corrected optimization problem yields the following first-order condition:

0 = 2 · E
[(
Rn − µ̂− Si[v2] · β̂i ·Xn,i

)
· S′i[v2] · β̂i ·Xn,i

]
− C′i[v2]

= 2 · S′i[v2] · (1− Si[v2]) · β̂2
i − C′i[v2]

= 2 · ŝe4
i

(v2+ŝe2
i )3 · β̂

2
i − C′i[v2].

And, taking the expectation of this corrected first-order condition with respect to realizations of the
true slope coefficient yields:

0 = E
[

2 · ŝe4
i

(v2+ŝe2
i )3 · β̂

2
i

]
− C′i[v2] = 2 · ŝe4

i

(v2+ŝe2
i )3 · (σ

2 + ŝe2
i )− C′i[v2].

By inspection, we see that choosing any Ci[v2] with the following first derivative,

C′i[v2] = 2 · ŝe4
i

(v2+ŝe2
i )3 · (v

2 + ŝe2
i )

= 2 · ŝe4
i · (v2 + ŝe2

i )−2
,

will result in a minimum at v2 = σ2. Thus, by appropriately choosing the constant of integration,
we can arrive at the desired result:

Ci[v2] = 2 ·
(

1
1+ŝe2

i /v
2

)
· ŝe2

i .
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B Distributional Assumptions
The statistical approach described in Section 2 models the anomaly-discovery process as independent
draws from a normal distribution. The key assumption is that the strength of cross-sectional
predictors is drawn from a common distribution. The assumption of normality is not essential.

To see why, consider an alternative setting where the true slope coefficients are drawn from a
Laplace distribution:

β?i
iid∼ Laplace[

√
2 /σ].

The probability density function of this Laplace distribution is given by pdf[β] = 1
σ·
√

2 · e
−

√
2
σ
·|β|,

which implies that the mean and variance of the resulting draws are the same as in the original
normally distributed case: E[β?i ] = 0 and Var[β?i ] = σ2. We now show that, even though the true
slope coefficients are being drawn from a different prior distribution, you can apply the exact same
logic to estimate the anomaly base rate.

If the true slope coefficients are drawn from a Laplace distribution, then the functional form of
our inference problem will change slightly. Now, the negative log likelihood of the true slope
coefficient taking on a particular value, β?i = β, given the realized cross-section of returns and
lagged values will correspond to

− log Pr[β|R,Xi] = 1
2·(N ·ŝe2

i )
·∑n

(
Rn − µ̂− β ·Xn,i

)2
+
√

2
σ
× |β|+ · · ·

= 1
2·ŝe2

i

·
{

1
N
·∑n

(
Rn − µ̂− β ·Xn,i

)2
+
√

8 · ŝe2
i

σ
× |β|

}
+ · · ·

where the “· · · ” represents constants that do not depend on the choice of β. This inference problem
suggests using a different penalized-regression procedure than before—i.e., a procedure with an
absolute-value penalty rather than a quadratic penalty like a Ridge regression.

The least absolute shrinkage and selection operator (the LASSO; Tibshirani, 1996) is just such a
penalized-regression procedure. Estimating the LASSO involves solving the optimization problem
below:

β̂i[λ] def= arg min
β

{
1
N
·∑n

(
Rn − µ̂− β ·Xn,i

)2
+ λ · |β|

}
.

Note that this is just the optimization problem given in Equation (5) when replacing β2 with |β|.
What is more, when there is only one variable that has been standardized to have zero mean and
unit variance, it is possible to characterize the solution to this optimization problem analytically:

β̂i[λ] = Sign[β̂i] · (|β̂i| − λ)+.

Thus, as pointed out in Park and Casella (2008), the LASSO’s absolute-value penalty can be
interpreted as the effect of imposing Laplace priors on an inference problem when the tuning
parameter is chosen as follows:

λi =
√

8 · ŝe2
i /σ.

The proposition below shows that, if the true slope coefficients are drawn from a Laplace
distribution instead of a normal distribution, then we can learn about the anomaly base rate by
studying the best-fit tuning parameter in the LASSO instead of a Ridge regression. Different prior
distribution. Different penalized regression. Same underlying approach.
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Proposition B (Econometric Estimator, The LASSO). Let E[·] denote an expectations operator
evaluated with respect to realizations of β?i drawn from a Laplace distribution. If v̂2

i denotes the
parameter estimate with the minimum in-sample prediction error subject to an overfitting penalty for
the ith variable,

v̂2
i

def= arg min
v2>0

{
Erri

[
ŝe2
i /v

2
]

+ 2 · 1
[
|β̂i| >

√
8 · ŝe2

i /v
]
· ŝe2

i

}
,

then for all σ2 > 0 we have that E[v̂2
i ] = σ2.

Proof (Proposition B). The 2 ·1
[
|β̂i| >

√
8 · ŝe2

i /v
]
· ŝe2

i term in Proposition B is an information-
criterion penalty. This sort of penalty takes the form 2 · (df /N )× V̂ar[εn,i] where df represents the
estimator’s degrees of freedom. Zou et al. (2007) proves that the number of non-zero slope
coefficients is an unbiased estimator for the degrees of freedom when using the LASSO:

Pr
[
|β̂i| > λ

]
= df[λ].

Thus, since V̂ar[εn,i] = N · ŝe2
i , the generalized information-criterion penalty reduces to the one

above when λi =
√

8 · ŝe2
i /σ.
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Figure C1. Cumulative Returns. Solid black line, Av̄2
t : current value of a portfolio that

invested $1 in the base-rate-adjusted strategy on January 1st, 1990. Solid blue line, At: current
value of a portfolio that invested $1 in the benchmark strategy on January 1st, 1990. Dotted red
line, At \ Av̄

2
t : current value of a portfolio that invested $1 in the discarded-variables strategy

starting on January 1st, 1990. Left panel: cumulative gross returns. Right panel: cumulative
returns net of 1% per month performance threshold. Sample Period: January 1990 to June 2015.

C Additional Results
In this appendix, we present a variety of additional results related to the performance of the
benchmark and base-rate-adjusted trading strategies.

Cumulative Returns. Having shown that incorporating information about the prevailing
anomaly base rate improves variable selection, we now combine these selections into a single trading
strategy. We start by computing the cumulative returns to investing $1 in either the benchmark
strategy or the base-rate-adjusted strategy starting in January 1990. Figure C1 reports the total
amount of money that you would have in your account in month t if you followed either strategy,
continually reinvesting any capital gains along the way.

The left panel reports cumulative gross returns. By June 2015, a portfolio investing in the
base-rate-adjusted strategy (solid black line; Av̄2

t ) would have been worth $137.42 while a portfolio
investing in the benchmark strategy (solid blue line; At) would only have been worth $78.67.
What’s more, a portfolio that only invested in the variables discarded by the base-rate-adjusted
strategy (red dotted line; At \ Av̄

2
t ) would only have been worth $20.59. The right panel in Figure

C1 shows analogous results for cumulative returns net of the 1%-per-month performance threshold.
We recognize that some variables are noisier signals than others. And, with this idea in mind,

practitioners often use volatility weights to combine signals (e.g., see Moskowitz et al., 2012). We
want to emphasize that these volatility weights are a different phenomenon from what we
are studying in the current paper. The prior variance v̄2

¬i,t measures the ex ante likelihood of
encountering a tradable signal. These volatility weights measure the precision of a tradable signal
once it has been found.

What’s more, our approach to adjusting for the anomaly base rate is accounting for this
precision by dividing through by the squared forecasted standard error, s̄e2

i,t, when adjusting β̄i,t for
the prevailing anomaly base rate in Equation (38). Thus, the success of the base-rate-adjusted
strategy is not just coming from taking large bets on the most volatile predictors.

Performance Metrics. In Table C1, we explore the difference in performance between the
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benchmark and base-rate-adjusted strategies in more detail. We report both the mean and standard
deviation of each strategy’s monthly returns as well as their skewness, kurtosis, and annualized
Sharpe ratio. We also report the probability that, if you selected a variable in each strategy’s active
set of predictors at random, you would select a predictor in the top 33% by turnover.

The first column, middle panel, reveals that, after accounting for implementation costs, the
annualized Sharpe ratio of the benchmark strategy is only 0.43 during our sample period. By
contrast, when we look at the second column, we can see that the base-rate-adjusted strategy has
an annualized Sharpe ratio of 0.57. And, as you would expect, this difference is due to the
base-rate-adjusted strategy systematically dropping variables from the benchmark portfolio that
only seem to have strong predictive power in-sample.

The third column shows that the net returns of a trading strategy that only invests in the
variables that are held by the benchmark strategy but not by the benchmark-adjusted strategy are
only 0.18% per month. Moreover, this discarded-variables strategy has an annualized Sharpe ratio of
only 0.11. The top and bottom panels show that these conclusions are robust to varying the
threshold for implementation costs.

All our results are robust to estimating the anomaly base rate using cross-validation rather than
the regularized estimator in Proposition 2.2 as shown in Table D3 of Appendix D. And, the boost in
performance associated with the base rate is not coming from trading excessively often. The
base-rate-adjusted strategy is no more likely than the benchmark strategy to select high-turnover
predictors. There is no difference in the fraction of high-turnover strategies, Pr[hiTOs], between
columns (1) and (2).

Abnormal Returns. We next show that the performance of the base-rate-adjusted strategy
is not just the result of exposure to market risk. We run a time-series regression of the net excess
returns to the base-rate-adjusted strategy on the excess returns to the value-weighted market:

RAv̄2
t ,t

= â+ b̂ ·RMkt,t + êt.

In the equation above, RMkt,t is the excess return on the market in month t, â is the abnormal
return to the base-rate-adjusted strategy, b̂ is the slope coefficient from this time-series regression,
and êt is the regression residual. These data come from Kenneth French’s website.9

Column (4) in Table C2 shows that market-risk exposure does not account for the base-rate-
adjusted trading strategy’s good performance. The average net return of the base-rate-adjusted
strategy is 0.74% per month; and, after accounting for market-risk exposure, the net abnormal
return to this strategy is 0.67% per month. There is hardly any difference.10

Columns (2) and (6) in Table C2 replicate the same analysis using the net returns of the
benchmark and discarded-variables strategies as the left-hand-side variable. Neither of these
alternative strategies has significant net excess returns after adjusting for exposure to the market.

New Variables. Finally, we motivated this paper by discussing the problem faced by a
researcher who is trying to evaluate statistical evidence concerning a new cross-sectional predictor.
So, in the last part of our analysis, we investigate whether our estimate for the prevailing anomaly
base rate can help researchers evaluate new predictors.
9See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
10These results are not unexpected to the extent that the firm characteristics entered our sample because they had
anomalous returns relative to a factor model, often the CAPM, during some period of time.
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At Av̄2
t At \ Av̄

2
t

threshold = 0.50% (1) (2) (3)

Gross: E[Rs,t] 1.37 1.46 0.77

Net of
minimum

performance
threshold:

E[Rs,t] 0.87 0.96 0.32
Sd[Rs,t] 3.73 3.77 6.37

Skew[Rs,t] 1.88 1.77 1.99
Kurt[Rs,t] 11.16 9.38 17.81

SRs 0.80 0.88 0.17
Pr[hiTOs] 0.35 0.36 0.28

1.00%

Gross: E[Rs,t] 1.52 1.72 1.15

Net of
minimum

performance
threshold:

E[Rs,t] 0.53 0.74 0.18
Sd[Rs,t] 4.27 4.50 5.66

Skew[Rs,t] 1.31 0.94 0.92
Kurt[Rs,t] 7.75 5.79 8.87

SRs 0.43 0.57 0.11
Pr[hiTOs] 0.32 0.34 0.29

1.50%

Gross: E[Rs,t] 1.74 2.06 1.35

Net of
minimum

performance
threshold:

E[Rs,t] 0.26 0.68 −0.10
Sd[Rs,t] 4.76 5.09 5.73

Skew[Rs,t] 1.22 0.74 0.42
Kurt[Rs,t] 6.64 5.16 6.61

SRs 0.19 0.46 −0.06
Pr[hiTOs] 0.31 0.33 0.29

Table C1. Performance Metrics. Performance statistics for the excess returns to three
different trading strategies. Column (1): benchmark strategy, At. Column (2): base-rate-adjusted
strategy, Av̄2

t . Column (3): strategy that invests in variables held by the benchmark strategy but
not the base-rate-adjusted strategy, At \ Av̄

2
t . All return statistics quoted in % per month.

E[Rs,t]: mean monthly return. E[Rs,t]: mean net monthly return. Sd[Rs,t]: standard deviation of
net monthly returns. Skew[Rs,t]: skewness of net monthly returns. Kurt[Rs,t]: kurtosis of net
month returns. SRs: annualized Sharpe ratio using net monthly returns. Pr[hiTOs]: fraction of
predictors included in the strategy that are in top 33% by turnover. Top panel: threshold of
0.50% per month. Middle panel: threshold of 1.00% per month. Bottom panel: threshold of
1.50% per month. Sample period: January 1990 to June 2015.
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(a) Summary Statistics
Avg Sd SR

RMkt,t 0.62 4.33 0.50

(b) Regression Results
Dependent Variable: Rs,t

At Av̄2
t At \ Av̄

2
t

(1) (2) (3) (4) (5) (6)

Const 0.53 0.44 0.74?? 0.68?? 0.18 0.04
(0.34) (0.32) (0.34) (0.32) (0.32) (0.29)

RMkt,t 0.15??? 0.09? 0.22??
(0.05) (0.08) (0.10)

Adj. R2 1.86% 0.47% 2.62%
#Obs 306 306 306 306 306 306

Table C2. Abnormal Returns. Net abnormal returns relative to the market for three
different trading strategies: benchmark strategy, At; base-rate-adjusted strategy, Av̄2

t ;
set-difference strategy that invests in variables held by the benchmark strategy but not the
base-rate-adjusted strategy, At \ Av̄

2
t . RMkt,t: excess return on the value-weighted market

portfolio. (a) Summary Statistics. Mean and standard deviation of the excess return on
the market in units of % per month as well as the annualized Sharpe ratio. (b) Regression
Results. Each column reports the results of a separate time-series regression with the net
excess returns of a particular strategy as the left-hand side variable. Const has units of % per
month, and the slope coefficients are dimensionless. Numbers in parentheses are Newey-West
standard errors. Statistical significance: ? = 10%, ?? = 5%, and ??? = 1% under the assumption
of a single test. Sample period: January 1990 to June 2015. All regressions involve 306 monthly
observations.

To do this, we first compute the realized returns of each variable-specific trading strategy held
by the benchmark strategy in the 10 years immediately after its publication. Let Ri,t0(i)+120 denote
the annualized return to the variable-specific strategy associated with the ith variable defined in
Equation (28) during the 10 years immediately following its publication date as given in Tables 1a,
1b, and 1c. And, let t0(i) denote the month immediately following the publication of the ith
variable, e.g., for investment growth as defined in Titman et al. (2004), t0(i) = Jan2005. There are
62 variables discovered sometime after January 1990 for which we can forecast prior variance.

Then, we regress the post-publication returns of each variable on an indicator for whether the
variable would have been held by the benchmark strategy:

Ri,t0(i)+120 · directioni = â+ b̂ · 1
[
i ∈ At0(i)

]
+ ĉ · s̄e2

i,t0(i) + êi. (52)

Column (1) of Table C3 reports the results of this cross-sectional regression, which contains one
observation for each of the 62 variables discovered following January 1990. We estimate that
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Dependent Variable: Ri,t0(i)+120 · directioni
(1) (2) (3) (4)

Const 2.53 3.20 4.62 3.77
(3.07) (2.73) (2.80) (3.14)

1
[
i ∈ At0(i)

]
7.70?
(4.10)

1
[
i ∈ Av̄2

t0(i)

]
10.37?? 14.81??? 15.56???
(4.77) (5.33) (5.50)

1
[
i ∈ At0(i) \ Av̄

2

t0(i)

]
3.12
(5.13)

s̄ei,t0(i) −0.66 −0.51 0.01 −0.01
(0.62) (0.62) (0.68) (0.69)

|β̄i,t0(i)| −1.52? −1.49?
(0.87) (0.88)

Adj. R2 4.64% 6.42% 9.59% 8.59%
#Obs 62 62 62 62

Table C3. Newly Discovered Variables. Evidence that the anomaly base rate is helpful
when evaluating variables at the moment they are added to the academic literature. Each
column reports results of a separate cross-sectional regression with 62 observations, one for
each variable i discovered after January 1990. Ri,t0(i)+120 · directioni: annualized return to
zero-cost long-short portfolio associated with ith variable defined in Equation (28) during
10 years immediately following publication. Const: intercept term; units of % per year.
1[i ∈ At0(i)]: indicator variable for ith variable’s inclusion in the benchmark strategy in the
month following its discovery, t0(i); units of % per year. 1[i ∈ Av̄2

t0(i)]: indicator variable for ith
variable’s inclusion in the base-rate-adjusted strategy in month t0(i); units of % per year.
1[i ∈ At0(i) \Av̄

2

t0(i)]: indicator variable for ith variable’s inclusion in the benchmark strategy but
not the base-rate-adjusted strategy in month t0(i); units of % per year. Numbers in parentheses
are Newey-West standard errors. Statistical significance: ? = 10%, ?? = 5%, and ??? = 1%.

b̂ = 7.70% per year for the benchmark strategy.
By contrast, when we estimate the same regression using an indicator variable for inclusion in

the base-rate-adjusted strategy,

Ri,t0(i)+120 · directioni = â+ b̂ · 1
[
i ∈ Av̄2

t0(i)

]
+ ĉ · s̄e2

i,t0(i) + êi, (53)

we get a b̂ = 10.37% per year in column (2). Column (3) indicates that adjusting for the amount of
predictive power associated with the variable at the time of publication does not explain this
difference.

And, column (4) provides further evidence that a researcher should discount empirical results
suggesting the existence of a strong predictor during low anomaly-base-rate regimes. Variables
that would be included in the benchmark strategy at the time of discovery but not in the
base-rate-adjusted strategy have average returns of only 3.12% per year over the next decade.

58



D Robustness Checks

30/30 LS $1 filter $5 filter
(1) (2) (3)

Gross: E[Rs,t] 1.99 1.72 2.48

Net of 1.0%
minimum

performance
threshold:

E[Rs,t] 1.13 0.74 1.48
Sd[Rs,t] 6.17 4.50 4.02

Skew[Rs,t] 1.26 0.94 1.90
Kurt[Rs,t] 7.59 5.79 13.13

SRs 0.63 0.57 1.28

Table D1. Performance Metrics, Data Sample Robustness of performance statistics
for the excess returns of base-rate adjust strategy. Column (1): Statistics for portfolio going long
30% of stocks with highest-predicted returns and going short 30% of stocks with lowest predicted
returns. Column (2): $1 price filter for small and illiquid stocks. Column (3): $5 price filter for
small and illiquid stocks. All return statistics quoted in % per month. E[Rs,t]: mean monthly
return. E[Rs,t]: mean net monthly return. Sd[Rs,t]: standard deviation of net monthly returns.
Skew[Rs,t]: skewness of net monthly returns. Kurt[Rs,t]: kurtosis of net month returns. SRs:
annualized Sharpe ratio using net monthly returns. Sample period: January 1990 to June 2015.
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AR(1) AR(3) AR(5)
(1) (2) (3)

Gross: E[Rs,t] 2.06 1.72 1.59

Net of 1.0%
minimum

performance
threshold:

E[Rs,t] 1.08 0.74 0.59
Sd[Rs,t] 5.11 4.50 4.46

Skew[Rs,t] 0.79 0.94 1.13
Kurt[Rs,t] 4.72 5.79 6.40

SRs 0.73 0.57 0.46

Table D2. Performance Metrics, Autoregressive Order. Robustness of performance
statistics to variations in the autoregressive order to forecast the out-of-sample base rate.
Column (1): autoregressive process of order 1. Column (2): autoregressive process of order 3.
Column (3): autoregressive process of order 5. All return statistics quoted in % per month.
E[Rs,t]: mean monthly return. E[Rs,t]: mean net monthly return. Sd[Rs,t]: standard deviation of
net monthly returns. Skew[Rs,t]: skewness of net monthly returns. Kurt[Rs,t]: kurtosis of net
month returns. SRs: annualized Sharpe ratio using net monthly returns. Sample period: January
1990 to June 2015.
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Regularized Cross-Validated
(1) (2)

Gross: E[Rs,t] 1.72 1.68

Net of 1.0%
minimum

performance
threshold:

E[Rs,t] 0.74 0.69
Sd[Rs,t] 4.50 4.25

Skew[Rs,t] 0.94 0.98
Kurt[Rs,t] 5.79 7.47

SRs 0.57 0.70

Table D3. Performance Metrics, Cross-Validated. Robustness of performance statis-
tics to estimating v̂2

i,t using cross-validation rather than the regularized estimator from
Proposition 2.2. Column (1): baseline estimates using regularized estimator. Column (2):
estimates using 10-fold cross-validation procedure as used in simulation analysis. See Figure 5
and surrounding discussion on page 22 for more details. All return statistics quoted in % per
month. E[Rs,t]: mean monthly return. E[Rs,t]: mean net monthly return. Sd[Rs,t]: standard
deviation of net monthly returns. Skew[Rs,t]: skewness of net monthly returns. Kurt[Rs,t]:
kurtosis of net month returns. SRs: annualized Sharpe ratio using net monthly returns. Sample
period: January 1990 to June 2015.
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