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Abstract. The limits of arbitrage explain how a speculative bubble is sustained; they do
not explain how likely one is to occur. To do that, you need a theory about the thing that
sporadically causes arbitrageur constraints to bind. I propose a first such theory, which is
based on social interactions between speculators. The theory says that bubbles should be
more likely in assets where increases in past returns make excited-speculators relatively
more persuasive to their peers. I empirically verify this ex ante prediction about bubble
likelihoods and show that it is robust to some ex post disagreement about bubble
definitions.
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1. Introduction
Suppose there has recently been some good news
about an asset. As a result, the asset’s price has
increased a bit. Given everything else you know about
the asset, how likely is it that this modest price
increase will morph into a full-blown speculative bub-
ble (i.e., a large additional price boom driven by
excited-speculators who overvalue the asset followed
by a crash when arbitrageur constraints are finally
relaxed)?

Investors and policymakers really want to be able
to answer this sort of question. When investors ask
things like “by driving rates ever lower, is the Fed
helping to fuel dangerous bubbles?,” they are asking
about the likelihood of a future bubble.1 Likewise,
when Alan Greenspan expressed his concerns in 2005
about “froth in the housing market,” he was express-
ing concerns about the exact same thing.2 Although
researchers tend to focus on predicting when a bubble
will pop, for Greenspan the timing of the crash was
beside the point. The ensuing housing collapse would
have been just as bad for U.S. investors had prices
peaked in 2007 or 2008 rather than 2006.

Popular accounts of bubble formation are unable to
answer questions about when and where a specula-
tive bubble is most likely to occur next. In fact, most
authors openly acknowledge that this is a soft spot in
their narratives. For example, Minsky (1970) admits
that “an event that is not of unusual size or duration
can trigger a sharp financial reaction.” And, Shiller
(2000) calls this fact “unsatisfying to those of us seek-
ing scientific certitude.”

Kindleberger (1978) does tell us that bubbles tend to
occur on the back of good news, Pr[GoodNewst | Bubblet+1] ≈ 1.
But, this is an observation about the probability of
good news given a bubble, not the probability of a
bubble given good news. Good news is not a reliable
predictor of future bubbles, Pr[Bubblet+1 | GoodNewst] � 1.
“Virtually every mania is associated with a robust eco-
nomic expansion, but only a few economic expansions
are associated with a mania” (Kindleberger 1978).

Unfortunately, the existing academic literature can-
not speak to the ex ante likelihood of bubbles either.
The standard approach to modeling speculative bub-
bles goes by the name of “limits to arbitrage” (Shleifer
and Vishny 1997). This recipe calls for equal parts bias
and constraint. The bias—for example, overconfidence
(Daniel et al. 1998, Scheinkman and Xiong 2003) or
extrapolation (Hong and Stein 1999, Barberis et al.
2015)—causes speculators to overvalue an asset. The
constraint—for example, a short-sale ban (Miller 1977)
or margin requirement (Gromb and Vayanos 2002)—
prevents arbitrageurs from fixing the problem. These
two ingredients produce a speculative boom. The
crash occurs when the constraint is finally lifted,
allowing arbitrageurs to trade against speculators’
excess demand.

Although this limits-to-arbitrage framework does
give us conditions under which a bubble can exist, it
says nothing about when and where these conditions
are most likely to be satisfied in the future. In fact,
most papers in this literature sidestep the issue of ex
ante likelihoods entirely. They start by simply assuming
that a bubble has already begun. “We assume that the
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price surpasses the fundamental value at a random point
in time t0” (Abreu and Brunnermeier 2003). Each paper
then studies how the specific bias or constraint responsi-
ble for the bubble will impact the rest of its life span.
How much will prices rise during the boom? When will
arbitrageurs pop the bubble? How far will prices fall
during the crash?

To fill this gap in our understanding, I develop a
first simple theory explaining the ex ante likelihood of
bubbles. This requires a story for why, “on occasion
and under some circumstances (Barberis 2018),” a
speculator bias will cause some arbitrageur constraint
to bind and a bubble to form. And, to be empirically
useful, this bubble-generating mechanism must have
two key properties.

First, the limits-to-arbitrage literature has docu-
mented many different speculator biases and arbitra-
geurs constraints, and different bias-constraint pairs
may be responsible for different bubble episodes. So
the bubble-generating mechanism I propose must
not be specific to one particular bias-constraint pair.
It must work the same way no matter which pair
happens to bind in any given bubble episode.3

Second, the key parameter governing the ex ante
likelihood of a bubble must be relatively stable over
time both during and between bubble episodes. That
way, a researcher can estimate this parameter during
normal times and use it to predict the likelihood of a
future bubble. A theory in which bubbles just happen
because the key parameter suddenly jumps would
explain nothing. It would take us from being unable
to predict future bubbles to being unable to predict
future parameter changes.

The bubble-generating mechanism I propose is based
on the observation that speculators “go mad in herds
[but] only recover their senses slowly and one by one”
(Mackay 1841). This is a statement about how social
interactions govern the dynamics of an excited-specula-
tor population. These social interactions usually make
the population disappear. But, occasionally they spark
exponential growth. When this happens, whatever bias
the resulting mob of excited-speculators suffers from
will cause arbitrageur constraints to bind and a bubble
to form.

This bubble-generating mechanism satisfies both
requirements. It is a theory about population dynam-
ics not pricing errors. So it works the same way
regardless of the bias-constraint pair involved. What
is more, the same population dynamics operate both
during and between bubble episodes. So a researcher
can estimate the key parameters governing these pop-
ulation dynamics during normal times when social
interactions are busy driving the excited-speculator
population to zero.

The existing behavioral finance literature on social
interactions treats them as yet another source of bias
(Shiller 1984, Shive 2010, Burnside et al. 2016, Hirshlei-
fer 2020). By contrast, this paper uses social interac-
tions as an on/off switch to regulate the size of the
excited-speculator population regardless of which
bias they suffer from. The key insight is that social
interactions can produce a sharp qualitative change in
the size of the excited-speculator population. And, it
is possible to characterize what makes an asset more
susceptible to such events in the future.

I begin in Section 2 with an economic model built
out of two separate components. The first is an off-
the-shelf limits-to-arbitrage model, which determines
how a bubble will unfold once excited-speculators
enter the market. The second is a time-varying popu-
lation of excited-speculators. During normal times,
social interactions cause this population to vanish,
leaving prices unaffected by any biases they might suf-
fer from. However, under certain conditions, the exact
same social interactions can generate explosive popu-
lation growth. When this happens, speculator biases
(whatever those are) cause arbitrageur constraints
(whatever those are) to bind and a bubble to form.

This economic model predicts that speculative bub-
bles should occur more often in assets where increases
in past returns make excited-speculators relatively
more persuasive to their peers. Section 3 empirically
verifies this ex ante prediction about bubble likeli-
hoods using data on industry-level stock returns via a
case-control methodology. Section 4 compares these
findings with Greenwood et al. (2019) (GSY) and eval-
uates the model’s out-of-sample forecasting power.

There are three main takeaways from this constellation
of empirical results. To start with, they provide an empiri-
cal confirmation of the first theory explaining when and
where speculative bubbles are most likely to occur next.
When investors and policymakers ask economists about
the ex ante likelihood of a bubble, economists now have
something to base their answer on. To be sure, the eco-
nomic model is extremely stylized. Part of the goal is to
highlight that questions about ex ante bubble likelihoods
are outside the scope of the existing limits-to-arbitrage
framework. The second main takeaway is that the theory
is not too stylized to be empirically useful.

Last but not least, there is no general consensus
about which historical market episodes are specula-
tive bubbles. So you might be asking yourself: “what
hope do we have of predicting future bubbles if we
cannot even agree on what was a bubble after the
fact?” The third main takeaway is that it is possible to
test ex ante predictions about bubble likelihoods even
in the presence of some ex post disagreement about
bubble definitions. By analogy, suicide is recognized
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as the most likely form of gun death in America even
though coroners sometimes disagree about whether a
particular gun death was a suicide, homicide, or
accident.4

Definitions matter. But, once we acknowledge that a
general kind of phenomenon called a “speculative
bubble” sometimes occurs, we do not need complete
agreement about the right way to define a speculative
bubble in order to have a scientifically rigorous conver-
sation about what makes one more likely to occur in the
future. A better definition would allow us to have a
more precise conversation. But, a meaningful conversa-
tion can still be had using a working definition.

1.1. Related Literature
This paper builds on the limit-to-arbitrage literature
(Shleifer and Summers 1990, Shleifer and Vishny 1997,
Barberis and Thaler 2003, Gromb and Vayanos 2010),
which explains how a pricing error can be sustained in
equilibrium. Empirical papers, such as Ofek and
Richardson (2001), Brunnermeier and Nagel (2004), and
Xiong and Yu (2011), were particularly influential in
showing that the theoretical limits-to-arbitrage recipe
produces speculative bubbles in the real world.

Cutler et al. (1990) and De Long et al. (1990) suggest
that bubble episodes are associated with feedback
trading just like in my economic model. And, the peer
effects literature offers a microfoundation for this
feedback trading (Shiller and Pound 1989, Hong et al.
2004, Kaustia and Knüpfer 2012, Bursztyn et al. 2014,
Bailey et al. 2018).

The current paper is closely related to GSY.
Although both papers predict something about bub-
bles, they do not predict the same thing about bub-
bles. GSY predicts whether an already booming
industry will crash immediately. I predict whether a
not-yet-booming industry will bubble over at all.

2. Economic Model
This section presents an economic model that predicts
the ex ante likelihood of an asset experiencing a spec-
ulative bubble. I start in Section 2.1 with a standard
limits-to-arbitrage setup based on Hong and Stein
(1999). This component of the model specifies the
equilibrium price of an asset as a function of the num-
ber of excited-speculators. These excited-speculators
suffer from some psychological bias, which causes
them to overvalue the asset. There is also a group of
arbitrageurs who face some constraint, which pre-
vents them from correcting the resulting pricing error.

Then, in Section 2.2, I describe the bubble-generating
mechanism that determines whether there are any
excited-speculators in the market. This mechanism is
based on the idea that speculators “go mad in herds
[but] only recover their senses slowly and one by one”

(Mackay 1841). Most of the time, social interactions
between speculators cause the population of excited-
speculators to vanish, leaving prices unaffected by any
bias they might have. However, “on occasion and
under some conditions” (Barberis 2018), the very same
social interactions cause the excited-speculator popula-
tion to explode. When that happens, speculators’ bias
(whatever this is) will cause arbitrageurs’ constraint
(whatever that is) to bind and a bubble to form.

Finally, in Section 2.3, I bring these two separate
components together to show that a novel parameter,
θ, predicts the likelihood of a future bubble episode.
This parameter captures how much more persuasive
speculators are to their peers when an asset has experi-
enced high past returns. When house prices rise by
10%, it is national news. Everyone starts talking about
the housing market, θ� 0. By contrast, although a 10%
increase in the price of textile stocks is a big deal for
market participants, it is not going to allow these partic-
ipants to recruit many friends, θ ≈ 0. Thus, following a
small initial run-up in prices, housing should be more
likely to experience a speculative bubble than textiles,
regardless of the specific bias-constraint pair involved.

2.1. Limits to Arbitrage
Here is how the limits of arbitrage determine the equi-
librium price of an asset conditional on the size of the
excited-speculator population in the market.

Time proceeds in discrete steps indexed by t �
1, 2, : : : There is a single risky asset with a per period
payout of vt dollars per share:

Δvt � κv · (μv − vt−1) + σv · εv,t: (1)

μv � 0 is the risky asset’s average payout per period,
κv ∈ (0, 1) is its mean-reversion coefficient, σv > 0 is
the volatility of changes in its per period payout, and
εv,t ~

IID Normal(0, 1) is an independent identically
drawn (IID) shock. ψ ≥ 0 is the supply of risky shares.

The market contains two kinds of agents: news-
watchers and speculators. Newswatchers play two
separate roles. First, they incorporate news about an
asset’s payouts into the price. Every period there is a
new unit mass of newswatchers indexed by j ∈ [0, 1].
γ > 0 denotes newswatchers’ risk-aversion coefficient.
The jth newswatcher in period t chooses his demand,
xj,t, to maximize his expected end-of-period utility
from consuming the asset’s time t payout given the
price, pt:

xj,t � argmax
x

Ej
[− e−γ·(vt−pt)·x

]
: (2)

The newswatchers within each cohort have heteroge-
neous beliefs. Prior to the start of period t, the jth
newswatcher observes a private signal, sj,t, about the
asset’s time t payout, where

vt � sj,t + εj,t: (3)

Chinco: The Ex Ante Likelihood of Bubbles
Management Science, Articles in Advance, pp. 1–23, © 2022 INFORMS 3



sj,t denotes the jth newswatcher’s beliefs after observ-
ing his private signal, and εj,t ~

IID Normal(0, 1) is noise.
There are two additional assumptions mirroring

Admati (1985). First, the heterogeneous beliefs of each
newswatcher cohort are correct on average:

vt � E[sj,t] �
∫ 1

0
sj,t · dj: (4)

Second, although different newswatchers get different
private signals, every newswatcher’s private signal
has unit precision, Var[εj,t] � 1.

Newswatchers also play the role of constrained
arbitrageur. Their constraint takes the form of
bounded rationality.5 “At every time t, newswatchers
formulate their asset demands based on the static
optimization notion that they buy and hold … More
critically … [newswatchers] do not condition on cur-
rent or past prices. In other words, the equilibrium
concept is a Walrasian equilibrium with private valua-
tions, as opposed to a fully revealing rational expecta-
tions equilibrium” (Hong and Stein 1999).

This choice of constraint is convenient because it
implies that newswatcher beliefs about future realiza-
tions of nt do not affect an asset’s current price level.
This independence completely separates the limits of
arbitrage (how a bubble is sustained) from the bubble-
generating mechanism (how likely they are to occur).
In essence, it is like using log utility in a macrofinance
model when things like hedging demand are not ger-
mane to the model’s conclusions.

In addition to newswatchers, the market also con-
tains nt ∈ [0, 1) excited-speculators. For now, take the
number of excited-speculators in the market at time t
as given. Excited-speculators cause an asset’s price to
move for nonfundamental reasons. They do so when-
ever nt > 0. Excited-speculators’ demand at time t is
proportional to recent performance:

zt(n) �def(λ · rt−1) × n: (5)

λ > 0 is the strength of excited-speculators’ bias. A
larger λ means excited speculators are more biased.

rt−1 �def(pt−1 + vt−1)=pt−2 is the past realized return. In
Section 3, I will think of rt−1 as an industry’s return
over the past two years.

The functional form of Equation (5) is consistent
with excited-speculators having extrapolative beliefs.
And, there is much evidence that, during bubble epi-
sodes, investors extrapolate returns (Cutler et al. 1990,
De Long et al. 1990, Hong and Stein 1999, Case et al.
2012, Glaeser and Nathanson 2017, Barberis 2018, Bar-
beris et al. 2018). However, this paper is not proposing
a new model of extrapolative beliefs during bubbles.
The predictions about ex ante bubble likelihoods do
not depend on the details of this functional form as I
show in Corollary 1.

The aggregate demand of newswatchers and
excited-speculators must clear markets:∫ 1

0
xj,t · dj + zt(n) � ψ: (6)

Newswatchers ignore the information content of pri-
ces, so they have demand

xj,t � (sj,t − pt) =γ: (7)

If the jth newswatcher’s private signal results in
beliefs that are higher than the price, (sj,t − pt) > 0,
then he will buy; otherwise, he will sell.

Proposition 1 (Limits to Arbitrage). When there are nt �
n excited-speculators in the market, equilibrium asset prices
are given by

pt(n) � vt − γ × ψ + γ · (λ · rt−1) × n: (8)

This price is increasing in the size of an asset’s payout, vt;
decreasing in the number of shares, ψ; and increasing in
the number of excited-speculators, n ∈ [0, 1).

2.2. Bubble-Generating Mechanism
Here is the bubble-generating mechanism I propose.
There are K� 1 speculators. Let Nτ ≥ 0 denote the
number of speculators excited about a particular asset,

and let nτ �defNτ=K denote the corresponding excited
fraction. This mechanism controls whether there are
any excited-speculators in the market, nτ > 0.

In this paper, social interactions between specula-
tors are not a separate bias. Instead, they are an on/
off switch. They regulate whether some speculator
bias will cause some arbitrageur constraint to bind. To
make this distinction as clear as possible, I set the
model up so that the limits of arbitrage and this on/
off switch operate on completely different timescales.
The fraction of excited-speculators at time t, nt ∈ [0, 1),
will be the steady-state outcome of social interactions
that play out in continuous time, τ ≥ 0. Because rt−1
will represent an industry’s return over the past two
years in Section 3, it is helpful to think about t as a
clock that measures time in two-year increments and
τ as a clock that measures time in days, Δτ ≈ Δt=500.

Popular accounts describe bubbles as “social epi-
demics” where “news of price increases spurs investor
enthusiasm which spreads by psychological contagion
from person to person, amplifying stories that might
justify the price increases and bringing in a larger and
larger class of investors, who, despite doubts about the
real value of an investment, are drawn to it partly
through envy of others’ successes and partly through a
gambler’s excitement” (Shiller 2000).

I use two rules to capture the feedback between an
asset’s past returns and the current number of specu-
lators excited about it. The first rule is that apathetic
speculators get excited via interactions with their n
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excited friends:

lim
Δτ↘0

Pr[nτ+Δτ−nτ �+1=K | nτ � n, r] �θ · r · (1−n) × n:

(9)

θ · r · (1− n) is the per capita excitation rate. (1− n) is
the size of the apathetic speculator population. r ∈
(0, ∞) is an asset’s past performance. $1 · r is the
amount of money you would have today if you had
invested one dollar in the asset two years ago. When-
ever r� 1, apathetic speculators missed out on a prof-
itable investment opportunity two years ago. θ ∈ (0, 1)
reflects how much more persuasive an asset’s excited-
speculators are following an increase in past returns.
In the late 1990s, tech returns generated a lot of word-
of-mouth buzz, θ ≈ 1, whereas textile stocks would
have to have very strong returns for excited-specula-
tors to have any sway on their friends, θ ≈ 0.

The second rule is that speculators “recover their
senses slowly and one by one” (Mackay 1841):

lim
Δτ↘0

Pr[nτ+Δτ − nτ � −1=K | nτ � n, r] � 1 × n: (10)

Multiplying n by one equates the phrase “slowly and
one by one” with a constant per capita departure rate.
The rate at which each excited-speculator comes to his
senses is the same regardless of whether 10% or 90%
of all speculators are currently excited. Moreover,
because Equation (10) does not contain r, this rate is
also independent of the asset’s past return.6

Both of these rules are smooth and continuous func-
tions, so you might expect that a slight increase in an
asset’s past return would always result in a slight
increase in its excited-speculator population. But this
is not what happens. The two rules actually produce
a sudden change in steady-state behavior as an asset’s
past returns cross a critical threshold called a
“bifurcation” (Hirsch et al. 2012, Guckenheimer and
Holmes 2013, Kuznetsov 2013, Strogatz 2014).

Let nτ(n0, θ, r) be the fraction of speculators excited
about an asset at time τ ≥ 0 if n0 were excited7 at
time τ � 0:

nτ(n0,θ, r) �def
{
n∈[0, 1) :n�

∫ τ

0
[θ ·r ·(1−nu)−1]·nu ·du

}
:

(11)
A steady-state population, n̄ ∈ [0, 1), is a population
such that

SS(θ, r) �def{ n̄ ∈ [0, 1) : nτ(n̄, θ, r) � n̄ ∀τ ≥ 0 }: (12)

We say that a particular steady-state value, n̄ ∈ SS(θ, r),
is stable if small perturbations away from n̄ die out
over time.8 The following proposition characterizes a
critical return threshold, r?, such that there will be a
stable nonzero steady-state population of excited-
speculators in the market whenever r > r?.

Proposition 2 (Bubble-Generating Mechanism). Define

r? �def 1=θ.
1. If r < r?, there is only one steady-state value for the

excited-speculator population, SS(θ, r) � {0}. This lone
steady state, n̄ � 0, is stable.

2. If r > r?, there are two steady-state values,
SS(θ, r) � {0, (r− r?)=r > 0}. Only the strictly positive
steady state, n̄ � (r− r?)=r > 0, is stable.

When r < r?, any initial population of excited-specula-
tors, n0 > 0, quickly loses interest. However, as soon as an
asset’s return crosses the critical threshold, r > r?, that
same initial population gives rise to a persistent crowd of
excited-speculators.

To see why social interactions can serve as an on/off
switch, consider what happens when there is only one
excited-speculator, Nτ � nτ ·K � 1. In this situation, the
entire population of excited-speculators will go extinct
if its lone member cannot excite at least one of his apa-
thetic friends before he himself comes to his senses:

Pr[ΔNτ � +1 |Nτ � 1, r]︸�������������︷︷�������������︸
�θ·r·(1−1=K)·1·Δτ≈θ·r·Δτ

< Pr[ΔNτ � −1 |Nτ � 1]︸�����������︷︷�����������︸
�1·Δτ

:

(13)

This simplifies down to the following inequality:
θ · r < 1. And, by rearranging terms, it is immediately
clear there will be no excited-speculators left when-
ever past returns are sufficiently low, r < r? � 1=θ, as
shown in the lower left panel of Figure 1.

However, although the same economic forces are at
work when r > r?, these forces produce the exact
opposite result. If a single speculator happens to get
excited when r > r?, this lone agent will likely be able
to excite at least one friend before he himself comes to
his senses. And, the same will also be true for this
newly excited friend, which leads to exponential
growth in the excited-speculator population. Thus,
when r > r?, the excited-speculator population will
remain stably above zero in steady state as shown in
the lower right panel of Figure 1.

2.3. Ex Ante Likelihood
I now fold the limits-of-arbitrage setup from Section
2.1 and the bubble-generating mechanism from Sec-
tion 2.2 into a single asset-pricing model, which can
be used to predict the likelihood of a future bubble in
a way that does not depend on the nitty gritty details
of the particular bias-constraint pair involved.

I connect the previous two subsections by assuming
that the number of excited-speculators in the limits-to-
arbitrage model from Section 2.1 is given by the
steady-state solution in Proposition 2 when r � rt−1:

nt � (rt−1 − r?)=rt−1 if rt−1 > r? � 1=θ
0 otherwise:

{
(14)
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It is as if on the first day of each discrete time period
t lasting roughly two years, a single speculator gets
excited about an asset. After he enters, the madness of
crowds either takes over or does not depending on both
the asset’s past return, r � rt−1, and its θ parameter. The
resulting steady-state excited-speculator population (if
one exists at all) is responsible for any nonfundamental
demand shock realized in period t.

A speculative bubble occurs at time t when news-
watchers push an asset’s time (t− 1) return above r?,
causing a crowd of excited-speculators to flood the
market at time t. Let bt be an indicator variable for
whether there is a nonzero population of excited-spec-
ulators in period t:

bt � B(θ, rt−1) �def1[rt−1 > 1=θ] � 1[nt > 0]: (15)

When bt � 1, Proposition 1 says there will be an equili-
brium pricing error.

It is easiest to understand the asset-pricing implica-
tions of this model by studying a sample price path.
Figure 2 shows a single realization simulated using
parameters ψ � 0, μv � 1:0, κv � 0:1, σv � 0:1, θ � 0:4,
and λ � 0:5. The figure is meant to illustrate economic
intuition, not match empirical facts. That being said, if
each period t corresponds to roughly two years, then

these parameters generate speculative booms that last
30 months and speculative busts that last 22 months
on average. This closely matches the averages of 27.4
and 23.0 months reported in Table 1a.

The black line in the top panel depicts the equilibrium
price each period, pt(n), whereas the thin green line
depicts the size of an asset’s payout, vt. Because the risky
asset is in zero net supply for this simulation, ψ � 0, these
two lines fall right on top of one another when there are
no excited-speculators in the market, nt � 0. Additionally,
this is exactly what happens most of the time. In the mid-
dle panel, the black line represents the asset’s realized
return in the previous period, rt−1 � (pt−1 + vt−1)=pt−2.

The asset’s past returns are typically below the
dashed blue line representing the critical value of
r? � 1=θ. However, there are four different points dur-
ing this simulation where newswatchers pushed the
asset’s past return above the critical threshold level
(i.e., where bt � B(θ, rt−1) � 1). These instances are
denoted by t1, t2, t3, and t4 on the x axis in the bottom
panel. The height of the red bars in the bottom panel
depicts the size of the excited-speculator population
during each period, nt.

The way in which the limits-to-arbitrage setup and
the bubble-generating mechanism interact with one
another introduces a delay. An asset’s return in period

Figure 1. Bubble-GeneratingMechanism

Notes. (Top panel) The x axis: an asset’s past return, r ∈ (0, ∞). The y axis: steady-state solutions, n̄ ∈ SS(θ, r), for a population of excited-specula-
tors. The solid black line reports stable steady states; the dashed red line reports unstable ones. Population displays a bifurcation at r? � 1=θ.
(Lower panels) Transition to steady state when r < r? vs. when r > r?. The x axis (top): fraction of speculators who are currently excited about an
asset, n. The y axis (top): growth rate of excited-speculator population, dndτ. When r < r?, this growth rate is always negative for all n > 0 as indi-
cated by the solid line remaining below the x axis. By contrast, when r > r?, this growth rate is positive for some population values, n > 0, as indi-
cated by the solid line arching above the x axis. The x axis (bottom): time since initial group of n0 ≥ 0 speculators got excited about an asset at
time, τ � 0. The y axis, (bottom): number of speculators excited about an asset at time τ > 0, nτ � nτ(n0, θ, r). Different shades of gray denote dif-
ferent initial population sizes, n0 ∈ [0, 1). When r < r?, any initial population of speculators n0 > 0 that happens to get excited will quickly lose
interest and disperse so nτ(n0, θ, r) → n̄ � 0. But, when r > r?, the excited-speculator population will converge to n̄ � (r− r?)=r > 0 whenever a
single speculator happens to get excited.
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t determines the size of the excited-speculator popula-
tion in period (t+ 1). This delay is essential to how the
model works. Morally speaking, it is not possible to
predict the likelihood of a future bubble without some
sort of delay.

This delay is absent from previous work on social
interactions between speculators (Shiller 1984, Shive
2010, Burnside et al. 2016, Hirshleifer 2020). Because
these papers were looking for a way to amplify existing
speculator biases, they studied contemporaneous feed-
back between asset returns and speculator demand.
Both contemporaneous feedback and delayed feedback
are likely present in real-world markets. The existence
of contemporaneous feedback will clearly affect how
speculative bubbles unfold once they begin. However,
by definition, contemporaneous feedback cannot affect
the likelihood of a future bubble, so I exclude this force
from my main analysis. Nevertheless, I show in Section
A.3 of the online appendix that the model’s predictions
about ex ante bubble likelihoods carry over to a setting
that includes contemporaneous feedback.

We know from Equation (1) how an asset’s payout
will fluctuate over time. Proposition 1 tells us how
newswatchers determine an asset’s equilibrium price
during normal times as a function of its current pay-
out, pt � vt − γ × ψ. Proposition 2 then tells us how the
critical boundary between normal times and bubble
episodes is set, r? � 1=θ. From these three pieces of
information, we can infer how likely it is that an
asset’s past returns will cross this critical boundary.
Thus, we have all the ingredients in place to predict
the likelihood of a future bubble.

Proposition 3 (Ex Ante Likelihood). Assume rt−1 < r?.
Controlling for an asset’s fundamentals, (μv, κv, σv), the
probability of a speculative bubble at time (t+ 1) is increas-
ing in θ:

∂θEt−1[bt+1 | rt−1 < r?] > 0: (16)

In other words, suppose two assets have identical payout
parameters, (μv, κv, σv), and time (t− 1) returns, rt−1 < r?.
Then, the asset with the higher speculator-persuasiveness
sensitivity, θ, will be more likely to experience a speculative
bubble at time (t+ 1).

In this paper, I will treat θ as an exogenous asset-
specific constant encapsulating all of the things that
make one asset’s speculators more or less persuasive
to their peers following high returns. I will not offer
an explanation for why θ differs across assets. This is
an interesting topic for future research, but there are
two things worth remembering here. First, this is the
very first theory that explains the ex ante likelihood of
bubbles. There is no other theory with strong micro-
foundations to fall back on. Second, you do not need
to know why θ varies across assets when using it to
make predictions. By analogy, the Capital Asset Pric-
ing Model (Sharpe 1964) is not a bad model because
William Sharpe never explained why some stocks
have higher market betas. You do not need this infor-
mation when using beta to price assets.9

A key fact about Proposition 3 is that the ex ante
predictions do not depend on the severity of specula-
tor bias, λ > 0. This captures the sense in which the
bubble-generating mechanism in Section 2.2 operates
independently from the specific bias-constraint pair
that happens to bind in Section 2.1. “How?” and
“How likely?” are two fundamentally different kinds
of questions.

Corollary 1 (How vs. How Likely). Assume rt−1 < r?.
Controlling for an asset’s fundamentals, (μv, κv, σv),
changes in λ do not affect the probability that it will experi-
ence a speculative bubble at time (t+ 1):

∂λEt−1[bt+1 | rt−1 < r?] � 0: (17)

Figure 3 illustrates the logic behind Corollary 1. The
left panel depicts periods t � 40, : : : , 80 of the sample

Figure 2. Sample Price Path

pt
vt

rt−1
= 1/θ

nt

1 2 3 . . . t1 t2 t3 t4 . . . 99 100

Notes. Simulated outcomes using ψ � 0, μv � 1:0, κv � 0:1, σv � 0:1, θ � 0:4, and λ � 0:5. The x axis represents time, t � 1, 2, : : : , 100. (Top panel)
The black line is price level, pt(n). The thin green line is per period payout, vt. Red shaded regions denote times when excited-speculators caused
arbitrageur constraints to bind and a speculative bubble to form. (Middle panel) The black line is the realized return in the previous period,
rt−1 � (pt−1 + vt−1)=pt−2. The dashed blue line is the threshold return level, r? � 1=θ. When rt−1 < r?, there are no excited-speculators, nt � 0. (Bot-
tom panel) Red vertical bars report the number of excited-speculators, nt. Four bubbles, bt � 1, are labeled t1, t2, t3, and t4.
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price path in Figure 2, which was simulated using
λ � 0:50. The right panel depicts the exact same time
period for the exact same simulation in a world where
speculator biases are 50% more extreme, λ � 0:75
rather than 0.50. Increasing λ increases the length of
the second and third bubble episodes. When λ � 0:50,
the second bubble episode only lasts one period,
whereas when λ � 0:75, it lasts two. Likewise, the
third bubble episode goes from three to four periods
long when λ increases from 0.50 to 0.75.

Yet the 50% increase in the severity of speculators’
bias does not affect the number of bubble episodes
(i.e., it does not affect ex ante likelihood of a bubble).
This is an important distinction because policymakers
are often interested in the ex ante likelihood of a bub-
ble and not the specific bias-constraint pair involved.
It is common to see articles discussing whether “China’s
stimulus program is prone to blow more bubbles in the
economy next year.”10 The main concern in these news
articles is the likelihood a future speculative bubble will
occur, not the particular ingredients used in the limits-
to-arbitrage recipe to create it.

3. Empirical Analysis
Predicting the likelihood of a future bubble means
finding some parameter related to bubble formation
that is relatively stable over time. That way, research-
ers can estimate it during normal times and use this
estimate to make out-of-sample predictions about the
likelihood of a future bubble episode. If we were to
model bubbles as the result of a sudden inexplicable
parameter change, then the model would not help us
predict where these sudden changes were most likely
to occur next.

The model developed in the previous section argues
that θ (i.e., the sensitivity of speculator persuasiveness
to changes in past returns) fits this criteria. The model
predicts that speculative bubbles should occur more
often in assets with high θ values, where small
increases in past returns make excited-speculators rel-
atively more persuasive to their peers. This section
empirically verifies this central prediction.

I begin in Section 3.1 by giving a working definition
of an industry-level bubble based on the definitions of
a “boom month” and “crash” given in Greenwood et al.
(2019). This working definition captures the industry-
level episodes that often get called bubbles, such as
the rise and fall of technology stocks during the late
1990s and early 2000s. However, in Section 4, I show
that the model’s ex ante predictions about the likeli-
hood of a future bubble are robust to some ex post dis-
agreement over how to define one. In layperson’s
terms, if you think that the bubble definition I am
using wrongly includes some episode that was not
actually a bubble, then feel free to leave it out. The
results will be unchanged.

Next, in Section 3.2, I lay out the empirical approach I
use. The previous literature on the econometrics of
speculative bubbles has been interested in predicting
the timing of the crash; however, the current paper is
interested in the ex ante likelihood of a future specula-
tive bubble regardless of whether the crash will go
down in history books as “Black Monday” or “Black
Tuesday.” So, to avoid complications related to how
each speculative bubble evolves, I use a case-control
methodology. I match each bubble episode (cases of
interest) to another otherwise identical industry-month
observation where no subsequent bubble occurs (con-
trol observations) based on data observed prior to the
start of each bubble episode. The end result is a
matched data set containing pairs of ex ante identical
industry-month observations, one that subsequently
experiences a speculative bubble and another that does
not.

In Section 3.3, I describe how I empirically estimate
θ for each industry using data prior to the start of any
bubble. I do this by looking at the relationship
between changes in daily media coverage and daily
returns for a given industry. I refer to the empirical
analog to θ as theta. Finally, in Section 3.4, I show
that differences in the value of theta across industry-
month observations in the matched data set predict
which of each matched pair will subsequently realize
a speculative bubble.

3.1. Bubble Episodes
The empirical analysis in this paper will primarily
focus on industry-level bubble episodes. I do this
because many historical accounts of bubbles have a
strong industry component. The DotCom bubble is a

Figure 3. How vs. How Likely
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λ = 0.75

Notes. Periods t � 40, : : : , 80 from the sample price path simulation in
Figure 2. All random number seeds and simulation parameters (except
λ) are kept the exact same: ψ � 0, μv � 1:0, κv � 0:1, σv � 0:1, and
θ � 0:4. (a) l � 0:50. Severity of excited-speculators’ bias is the same as
in Figure 2, λ � λ0 � 0:50. (b) l � 0:75. Severity of excited-speculators’
bias is 50% higher than in Figure 2, λ � 1:5 × λ0 � 0:75. Speculative
bubbles at times t2 and t3 now last longer than in Figure 2. But this
change in bias severity does not affect the number of bubbles.

Chinco: The Ex Ante Likelihood of Bubbles
Management Science, Articles in Advance, pp. 1–23, © 2022 INFORMS 9



prototypical example. What is more, industry-level
data offer several econometric advantages. Relative to
using national-level price indexes à la Kindleberger
(1978), analyzing industry returns results in higher-
powered statistical tests. And statistical power is
important given how rare bubbles are. Kindleberger
(1978) documents only 34 national-level bubble epi-
sodes in over 400 years! Relative to using individual
stock returns, analyzing industry returns also helps
circumvent several difficult measurement problems,
such as the problem posed by the entrance of new
firms in bubble industries.

I use data from the Center for Research in Securities
Pricing (CRSP) to compute the value-weightedmonthly
returns of the 49 Fama and French (1997) industries
from January 1975 to December 2017.11 I remove the
“Other” industry because this industry designation
does not represent a cohesive collection of firms, leav-
ing industries i � 1, : : : , 48. I only use U.S. firms (share
codes: 10 or 11) listed on the New York Stock Exchange,
American Stock Exchange, or NASDAQ (exchange
codes: 1, 2, or 3). I exclude industry-month observations
that contain fewer than five firms.

Let reti,t (percentage) denote the ith industry’s
value-weighted return in month t. Figure 4 shows the
cumulative return of each industry. Each black ribbon
depicts the value $1 ·∏t

s�Jan75 (1+ reti,s) (i.e., the
value in month t of a continuously reinvested portfo-
lio that started by investing one dollar in the ith indus-
try in January 1975).

Let retPast2Yri,t (percentage) be the ith indus-
try’s raw return over the past two years:

retPast2Yri,t �def
∏t

t′�t−23
(1+ reti,t′ ) − 1: (18)

If retPast2Yr � −100%, you would have lost your
entire one dollar investment from two years ago,
whereas if retPast2Yr � 200%, your initial one dol-
lar investment would have tripled in value. Let
netPast2Yri,t�def ∏t

t′�t−23 (1+ reti,t′ ) −∏t
t′�t−23 (1+

mktt′ ) (percentage) be an industry’s return net of the
market over the past two years, and let retPast5Yri,t
�def∏t

t′�t−59 (1+ reti,t′ ) − 1 (percentage) be its past five-
year raw return.

A speculative bubble involves a boom followed by
a bust. “In classical accounts of financial market bub-
bles, the price of an asset rises dramatically over the
course of a few months or even years, reaching levels
that appear to far exceed reasonable valuations of the
asset’s future cash flows … The bubble eventually
ends with a crash, in which prices collapse even more
quickly than they rose” (Barberis et al. 2018). So I start
my definition of industry-level bubble episodes by
looking for local maxima. Month t is a local maximum
if an industry’s cumulative returns are higher than at
any point65 years.

Not all local maxima are bubbles. To be a bubble,
the run-up must contain at least one boom month
where the industry realizes 100%+ returns over the
past two years (raw and net) and 50%+ raw returns
over the past five years as in Greenwood et al. (2019).
This rules out situations where an industry’s price
level gradually rose at a steady rate over several years.
In addition, the local maximum must also be followed
by a < −40% decline from peak to trough during the
next five years. This rules out situations where an
industry’s returns merely plateau after the boom
before beginning to rise once more.12

There are 15 industry-level bubble episodes in my
sample period as shown in Table 1a. The start of each
bubble episode is the last month prior to the peak
when the industry had returns over the past two years
less than 50%. This is the month just before the indus-
try’s returns really began to take off. The end of a bub-
ble is the month of the trough in the industry’s returns
following the peak.

3.2. Case-Control Methodology
Suppose two otherwise identical assets both realize a
modest price increase at time (t− 1). No bubble is cur-
rently taking place in either asset. One of these assets
has a high value of θ� 0; the other has a low θ ≈ 0.
Proposition 3 says that the asset with the higher θ
(i.e., the one whose speculators get a lot more persua-
sive following good returns) is more likely to experi-
ence a bubble in the future at time (t+ 1).

To test this prediction using data on industry-level
stock returns, I need to create a data set containing
pairs of otherwise identical industry-month observa-
tions where one observation realizes a future bubble
episode and the other does not. Then I need to show
that differences in θ predict which observation in each
pair will experience the future bubble. This empirical
goal is well suited to a case-control study.

Specifically, I look at the data available at the start
date of each bubble episode in Table 1a. Then, for
each prebubble observation, I find an otherwise simi-
lar industry-month observation with no subsequent
bubble episode. Both the prebubble observations and
the matched observations will have had modest posi-
tive returns at the time of matching. Both will have
similar fundamentals and return volatility at the
match date as well. Finally, I check whether θ predicts
which observation will realize a future bubble.

What is the right way to measure similarity
between industry-month observations? One possibil-
ity would be to look only at past returns. However,
Proposition 3 assumes that the two assets are the
same both in terms of their past returns and in terms
of their fundamental parameters. What is more, a key
lesson from Greenwood et al. (2019) is that “there is
much more to a bubble than a mere security price
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increase” (Greenwood et al. 2019, p. 22). So I use more
than just past returns when choosing a matched con-
trol for each bubble episode.

I match based on returns over the past two years
(both raw and net of the market) and raw returns over
the past five years. And I also match on book-to-market
ratio and return volatility over the past two years. Let
bookToMkti,t denote the average book-to-market ratio
of stocks in the ith industry as of time t, which I com-
pute using data from Compustat. Let volatilityi,t
(percentage per year) denote the value-weighted aver-
age of annualized volatility for firms in the ith industry.

Table 1b gives the matched industry-month obser-
vation associated with each bubble episode. I use the
optmatch package in R to perform the match. I meas-
ure distance between industry-month observations
using the Mahalanobis metric, which rescales Eucli-
dean distance to account for the covariance between
match variables. I want the matched sample to be
drawn during normal times, so I do not look for
matches during another bubble episode 62 years. A
matched observation need not be contemporaneous
with the start date of the corresponding bubble epi-
sode. For example, the machinery industry in October

Figure 4. Cumulative Industry Returns
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Notes. The x axis: time in months from January 1975 to December 2017. The y axis (log scale): dollar value at time t of a continuously reinvested
industry-specific portfolio that started with one dollar at the opening bell on the first trading day of January 1975. Green regions indicate the
boom period during a bubble episode. Red regions indicate the subsequent bust period. Grayed-out regions indicate aftershock bubbles, which
overlap with an earlier episode in the same industry. White hashmarks indicate boommonths.
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1994 is matched to the speculative bubble in the com-
puter hardware industry that begins in Match 1995.

Figure 5 plots the prebubble industry-month observa-
tions (cases; solid red lines) together with the matched
controls (dotted red lines). Matches can be drawn from
any observation taken during normal times, which are
represented by the black regions in each panel. The gray
regions represent time intervals where a bubble is taking
place62 years where nomatches can be selected.

turnoveri,t (percentage) is the value-weighted trad-
ing volume as a percentage of shares outstanding for
firms in the ith industry in month t. agei,t (years) is the
value-weighted age of firms in the ith industry in
month t. A firm’s age is defined as the number of years
since it first appeared in CRSP or Compustat.
ageTilti,t (percentage) is the difference between the
ith industry’s equal-weighted and age-weighted returns
over the past two years. When ageTilti,t > 0, younger
firms have outperformed older firms. newIssuancei,t
(percentage) is the percentage of firms in the ith indus-
try that issued equity during the past two years.
Δsalesi,t (percentage per year) is the value-weighted
year-over-year sales growth of firms in the ith industry.
CAPE is the market-wide cyclically adjusted price-to-
earnings (P/E) ratio from Robert Shiller’s website.13

Finally, retAcceli,t �def∏t
s�t−23 (1+ reti,s) −∏t−12

s′�t−23 (1+ reti,s′ )
(percentage) is the difference between the ith industry’s
value-weighted return over the past two years and its
value-weighted return one year ago.

To estimate θ in Section 3.3, I collect the data on the
number of times the ith industry is mentioned in a
Wall Street Journal (WSJ) article each day. These data
come from the WSJ Historical Archive available via
ProQuest. Let WSJcoveragei,t (percentage) denote the

average percentage of WSJ articles in each of the past
24 months that reference the ith industry. And let
ΔWSJcoveragei,t (percentage per year) be the year-
over-year change in the average percentage of WSJ
articles referencing the ith industry.

Table 2 shows summary statistics for the 15 prebub-
ble observations as well as the 15 matched control
observations with no subsequent bubbles. The 15 pre-
bubble industry-month observations look just like
their matched counterparts in terms of past returns,
book-to-market, and volatility in the first five rows.
This is mechanical. The matched observations were
selected because of their similarity along these dimen-
sions. However, there is no reason why the prebubble
observations and their matched counterparts need to
look similar along other dimensions. Nevertheless,
retAccel is the only variable with a systematic dif-
ference between cases and controls.

3.3. Estimating θ
The economic model predicts that bubbles will occur
more often in assets where increases in past returns
make excited-speculators much more persuasive to
their peers. I use the parameter θ to capture the sensi-
tivity of speculator persuasiveness to changes in an
asset’s past returns. In this section, I explain how I
estimate θ for each observation in my case-control
study. In Section 3.4, I show that prebubble cases tend
to have higher θ values than the matched control
observations.

My estimation strategy is motivated by the fact that
financial news outlets strategically choose which assets
to write stories about with an eye toward maximizing
their readership (Mullainathan and Shleifer 2005). Thus,

Table 1b. Matched Controls

Industry Match date retPast2Yr netPast2Yr retPast5Yr bookToMkt volatility Match distance

1 Gold 09/11 47.3 35.8 48.4 0.59 44.6 0.40
2 FabPr 06/79 38.8 18.0 106.9 1.04 39.7 0.42
3 Rubbr 10/11 41.9 14.4 14.9 0.48 47.1 0.26
4 BldMt 07/79 34.0 9.7 131.7 1.02 26.4 0.11
5 Smoke 07/80 52.6 14.3 128.1 0.94 21.5 0.28
6 Soda 12/87 42.3 24.0 198.8 0.29 39.4 0.38
7 Mach 10/94 51.0 30.1 43.7 0.43 30.6 0.24
8 Hshld 07/84 46.1 −7.1 89.9 0.64 23.2 0.22
9 BusSv 02/00 33.0 −9.3 155.8 0.23 68.7 0.29
10 MedEq 11/99 32.7 −14.3 182.5 0.19 43.7 0.31
11 Hardw 08/11 30.3 4.7 48.7 0.34 56.7 0.43
12 ElcEq 06/00 38.9 5.7 297.5 0.26 64.7 0.88
13 Hlth 06/82 44.6 35.9 480.5 0.48 35.7 0.38
14 Hlth 08/94 47.9 23.4 102.4 0.43 32.3 0.16
15 BldMt 11/12 39.2 15.8 17.8 0.47 31.5 0.23
Avg 41.4 13.4 136.5 0.52 40.4 0.33
Sd 6.9 15.5 121.9 0.28 14.2 0.18

Notes. The industry-month observations are selected as matches for each bubble episode listed in Table 1a. retPast2Yr (percentage),
netPast2Yr (percentage), retPast5Yr (percentage), bookToMkt, and volatility (percentage per year) are all measured using data
available as of the match date for each industry. Match distance is the Mahalanobis distance between a matched observation and the bubble
episode it wasmatched to. Avg, average; Sd, standard deviation.
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when an industry receives lots of positive coverage in
the WSJ, it suggests that many speculators are currently
excited about the industry.14

WSJ news articles come from the WSJ Historical
Archive available through ProQuest. I include stories
about a particular industry on each trading day from
January 1975 through December 2017. I classify a WSJ
article about the ith industry as positive if its title con-
tains more positive than negative words according to
the dictionary in Loughran and McDonald (2011).15

isPosArticlei,d is an indicator for the existence of a
positive WSJ article about the ith industry on trading
day d.

When θ� 0, an increase in an industry’s past
returns will cause speculators to talk a lot more about
the industry. When θ ≈ 0, the same increase in past
returns will not generate much speculator attention.
So to proxy for θ, I calculate the probability that there
is a positive WSJ article about the ith industry on the
day following an increase in its returns:

thetai,t �def
∑

d∈(t−24, t]

retWentUpi,d−1∑
d∈(t−24, t]retWentUpi,d−1

( )

× isPosArticlei,d:

(19)

Figure 5. Bubble Episodes andMatched Controls
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Notes. The x axis: time in months from January 1975 to December 2017. The y axis (log scale): dollar value at time t of a continuously reinvested
industry-specific portfolio that started with one dollar at the opening bell on the first trading day of January 1975. Solid red lines denote the
start date of a bubble episode in Table 1a. Gray regions denote bubble episodes 62 years. Dotted red lines denote the matched observations in
Table 1b. Black regions indicate the normal times fromwhich these otherwise similar control observations were selected.
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I compute this conditional probability using data on
each trading day during the previous two years,
d ∈ (t− 24, t], when an industry’s returns went up on
the previous day, retWentUpi,d−1 �def 1[reti,d−1 − μ̂i,d−1
> σ̂i,d−1], where μ̂i,d−1 and σ̂i,d−1 are the mean and

volatility of the industry’s daily returns over the pre-
vious 252 days, respectively.

Table 3 describes the distribution of theta in the
matched data set. The inset table shows that, for these
industry-month observations (either a prebubble case
or a matched control observation), a jump in returns
on day (d− 1) was immediately followed by a positive
WSJ news article on day d roughly 6% of the time on
average during the previous two years. However,
theta was 6.4% points higher for the 15 prebubble
cases, which saw positive returns followed by positive
coverage 9.2% of the time, than for the 15 matched
controls, which only saw positive returns followed by
positive coverage 2.8% of the time. The number in
parentheses is the t statistic for the 6.4%-point differ-
ence in means when clustering standard errors by
industry.

The histogram accompanying Table 3 depicts the
entire distribution of theta values (i.e., both prebubble
cases (solid black circles) and matched controls (dotted
white circles)). Although there is overlap in the two dis-
tributions, theta tends to be higher for the prebubble
cases than for the matched controls. Only two control
observations have theta > 5%, whereas 10 of the pre-
bubble cases do. The 1996 speculative bubble in the
Soda industry is the only case with theta � 0%.

There are four things about my estimation strategy
worth emphasizing. First, when creating my list of
otherwise similar control observations in Table 1b, I
did not consider any industry-month observations
during the two years following a bubble. So the esti-
mated theta values in Table 3 only use data
observed during normal times. These estimates do not
incorporate any information taken during bubble
episodes.

Second, my strategy for estimating θ is not tailored
to a specific bias-constraint pair. I am using the exis-
tence of a Wall Street Journal article with positive tone
as a proxy for whether speculators get excited about
an industry the day after it experiences positive
returns. I am not looking at which bias is responsible,
nor am I looking at which constraint might handicap
arbitrageurs. This is important because different
biases and constraints were likely at work during dif-
ferent bubble episodes in Table 1a.

Third, the economic model says that each industry
is endowed with a speculator sensitivity parameter, θ,
which is relatively stable over time. A speculative
bubble occurs when good news pushes an industry’s
recent performance above the critical threshold,
r? � 1=θ. In other words, θ does not increase prior to a
bubble; instead, returns increase, and this results in an
inflow of excited-speculators when θ� 0.

Figure 6 shows that this is exactly what is going on
in the matched data set for the estimated theta val-
ues. theta is 6.4% points higher for the 15 prebubble

Table 2. Summary Statistics for the Matched Data Set

Cases Controls

DifferenceAvg Sd Avg Sd
(1) (2) (3) (4) (5)

retPast2Yr 40.4 5.4 41.4 6.9 −0.97
(0.43)

netPast2Yr 13.3 16.5 13.4 15.5 −0.15
(0.03)

retPast5Yr 137.3 120.8 136.5 121.9 0.75
(0.02)

bookToMkt 0.5 0.3 0.5 0.3 0.00
(0.01)

volatility 39.3 13.0 40.4 14.3 −1.07
(0.21)

turnover 146.6 101.6 140.8 129.2 5.82
(0.14)

age 28.3 12.8 33.3 16.2 −4.98
(0.93)

ageTilt −0.3 7.5 2.9 12.3 −3.18
(0.85)

newIssuance 17.7 7.5 22.2 12.3 −4.47
(1.13)

Δsales 19.9 11.6 36.8 47.7 −16.87
(1.33)

CAPE 39.5 33.6 34.7 31.1 4.81
(0.41)

retAccel 33.9 19.8 15.8 21.1 18.01**
(2.41)

WSJcoverage 3.1 3.3 1.7 2.1 1.42
(1.42)

ΔWSJcoverage 0.3 0.5 0.4 0.8 −0.13
(0.52)

No. of observations 15 15

Notes. Cases indicate mean and standard deviation for 15 prebubble
observations. Controls indicate the same statistics for 15 matched
control observations. Difference is the difference in means across
samples. Numbers in parentheses are t statistics clustered by industry.
retPast2Yri,t (percentage) is the value-weighted return over the
past two years. netPast2Yri,t (percentage) is the value-weighted
return net of the market over the past two years. retPast5Yri,t
(percentage) is the value-weighted return over the past five years.
bookToMkti,t is the average book-to-market ratio in month t.
volatilityi,t (percentage per year) is the value-weighted daily
volatility in month t. turnoveri,t (percentage per month) is the value-
weighted trading volume divided by shares outstanding in month t.
agei,t (years) is the value-weighted firm age in month t. ageTilti,t
(percentage) is the difference between equal-weighted and age-
weighted return over the past two years. newIssuancei,t
(percentage) is the percentage of firms issuing equity in the past two
years. Δsalesi,t (percentage per year) is the value-weighted year-
over-year sales growth. CAPEt is the market-wide cyclically adjusted
P/E ratio in month t. retAcceli,t (percentage) is the value-weighted
return in months [t− 23, t] minus value-weighted return in months
[t− 23, t− 12]. WSJcoveragei,t (percentage) is the average percentage
of WSJ articles in past two years about an industry. ΔWSJcoveragei,t
(percentage per year) is the year-over-year change in the percentage of
WSJ articles about an industry. Avg, average; Sd, standard deviation.

**Statistically significant at the 5% level.
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cases than for the 15 matched controls on the date of
the match. But this is not due to theta increasing for
the industries with future bubble in the preceding
months. The difference in theta between the prebub-
ble cases and the matched controls is stable over the
preceding three years, with an average value of 7.1%
during this time period.

Because the sensitivity of speculator persuasiveness
to past returns is a novel economic quantity, I also
report the full time series of theta estimates for each
industry in Table 4. The gray regions denote time peri-
ods when a speculative bubble was taking place in an
industry. In addition to the sparkline plot, I also
report the mean and standard deviation of theta for
each industry during normal times.

It is clear from Table 4 that theta is not perfectly
constant over time for each industry. However, it is
also clear from the table that the main source of varia-
tion in theta is across industries not over time. Some
industries tend to have theta values close to zero
(e.g., Boxes, Guns, Medical Equipment); others tend to

have much larger values of theta (e.g., Autos,
Finance, Oil).

Fourth and finally, in the empirical analysis, a single
trading period corresponds to 2 years, Δt ≈ 2 years. In
my model, I assume that the excited-speculator popu-
lation dynamics play out on a much faster timescale,
Δτ� Δt, allowing it to reach a steady state every trad-
ing period. And consistent with this intuition, my
approach to estimating theta uses daily data, a hori-
zon 2 years

1 day × 252 trading days
1 year ≈ 500 times shorter than a

trading period.

3.4. Main Results
I find that differences in theta predict which
observations experience a future speculative bubble
just as suggested by the economic model. Let
willBeBubble indicate whether an observation in
the matched data set is one of the 15 prebubble cases.
Column (1) in Table 5a regresses this indicator on the esti-
mated theta:

willBeBubblei,t � α̂ + β̂ ·thetai,t + ε̂i,t: (20)

The slope coefficient of 4.55 implies that a 1%-point
increase in theta is associated with a 4.55%-point
increase in the likelihood of a future speculative bub-
ble. We saw in Table 3 that theta is 6.4% points
higher in the prebubble cases than in the matched con-
trols on average. This increase in theta among the 15
prebubble cases predicts a 4:55 × 6:4% ≈ 29%-point
increase in their ex ante bubble likelihoods. This is an
economically large change relative to the base rate of
50%. If you guessed at random whether an industry-
month observation in the matched data set would be fol-
lowed by a bubble, you would guess correctly 50% of the
time. Columns (2) and (3) in Table 5a confirm that the

Table 3. Theta Distribution in the Matched Data Set

Notes. Full sample indicates mean and standard deviation of theta across all 30 observations in the matched data set. Prebubble cases and matched
controls indicate the same statistics for just this subset of observations. Difference is the spread between average theta in prebubble cases and average
theta in matched controls. The number in parentheses is the t statistic clustered by industry. In the histogram, each circle represents an observation in
the matched data set. The x axis is the estimated value of theta. The y axis is the number of observations in the bin where each bin has a width of 1%.
Solid black circles are bubble episodes listed in Table 1a. Dottedwhite circles arematched controls listed in Table 1b.

***Statistically significant at the 1% level.

Figure 6. Evidence of Parameter Stability
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main result is a stable predictive relationship over the past
few decades.

Because the matched control for each prebubble
industry-month observation was chosen based on its
similarity in terms of past return, book-to-market
ratio, and volatility, these variables cannot explain
why theta predicts the ex ante likelihood of bubbles.
But, this is not the only way that the prebubble cases
might be different.

In columns (2)–(10) of Table 5b, I investigate the
predictive power of other variables. To make the coef-
ficients comparable, I divide each predictor by the dif-
ference between its average in the 15 prebubble cases
(Table 1a) and its average in the 15 matched controls
(Table 1b). As a result, the coefficient in each column
corresponds to the predicted change in ex ante bubble
likelihoods when moving from a variable’s average
value among matched controls to its average among
prebubble cases.

For example, Table 3 tells us theta is 6.4% points
higher in the prebubble cases. So column (1) in Table
5b reports the β̂ from the following regression:

willBeBubblei,t � α̂ + β̂ · (thetai,t=6:4) + ε̂i,t. Table 2
tells us that retAccel is 18.01% points higher in the
prebubble cases. So column (8) in Table 5b reports the
β̂ from the following specification: willBeBubblei,t
� α̂ + β̂ · (retAcceli,t=18:01) + ε̂i,t.

Table 5b reveals that variables other than theta
also have some forecasting power. The 15 prebubble
cases get 1.42% more WSJ coverage on average (Table
2, column (5)). Column (9) in Table 5b says this differ-
ence predicts a 6.71%-point increase in the probability
of a future bubble. The 15 prebubble cases have
16.87% higher sales growth on average. Column (6) in
Table 5b says this difference predicts a 5.96%-point
drop in the probability of a future bubble for these
observations. The 15 prebubble cases have 18.01%
higher return acceleration on average. Column (8) in
Table 5b says this difference predicts a 17.20%-point
increase in the probability of a future bubble.

That being said, column (1) in Table 5b reports that
the 6.4% case-control difference in average theta pre-
dicts a 28.97%-point increase in their ex ante bubble
likelihoods. This effect size dwarfs the other estimates

Table 4. Theta over Time and Across Industries

Notes. Sparkline plots depict theta from January 1975 to December 2017. Gray regions indicate bubble episodes. Black regions correspond to
normal times. All plots have the same y-axis scale. Avg and Sd are mean and standard deviation, respectively, of theta for each industry
computed using data observed during normal times.
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Table 5a. Ex Ante Likelihood of Bubbles

Dependent variable: willBeBubble
Full sample Before 2000 On/after 2000

(1) (2) (3)
intercept 22.58** 20.94* 21.60

(2.35) (1.81) (1.29)
theta 4.55*** 5.56*** 4.09***

(4.78) (2.95) (3.73)
Adjusted R2 0.26 0.25 0.25
No. of observations 30 16 14

Notes. Each column reports the results of a separate univariate regression. willBeBubble is the
indicator for the 15 prebubble cases in the matched data set. A coefficient of +1 implies a 1%-point
increase in the likelihood of a future bubble. Each prebubble case is matched to the most similar
industry-month observation without a subsequent bubble based on retPast2Yr (percentage),
netPast2Yr (percentage), retPast5Yr (percentage), bookToMkt, and volatility (percentage
per year) as of the start of the bubble. Prebubble and matched observations mechanically look similar
along these dimensions. retPast2Yri,t (percentage) is the value-weighted return over the past two
years. netPast2Yri,t (percentage) is the value-weighted return net of the market over the past two
years. retPast5Yri,t (percentage) is the value-weighted return over the past five years. bookToMkti,t
is the average book-to-market ratio in month t. volatilityi,t (percentage per year) is the value-
weighted daily volatility in month t. theta (percentage) is the empirical proxy for sensitivity of
speculator persuasiveness to increases in past returns. Numbers in parentheses are t statistics clustered
by industry.

*Statistical significance at the 10% level; **statistical significance at the 5% level; ***statistical
significance at the 1% level.

Table 5b. Ex Ante Likelihood of Bubbles

Dependent variable: willBeBubble (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
theta 28.97*** 33.74**

(4.78) (2.65)
turnover 0.07 −0.08

(0.14) (0.27)
age −3.02 −3.55

(0.89) (1.50)
ageTilt −2.53 −2.90

(1.10) (1.52)
newIssuance −4.35 −0.85

(1.04) (0.20)
Δsales −5.96*** −15.33***

(2.91) (3.80)
CAPE 0.59 2.14**

(0.40) (2.15)
retAccel 17.20** 15.04**

(2.01) (2.41)
WSJcoverage 6.71* −2.76

(1.80) (0.44)
ΔWSJcoverage −0.95 2.58

(0.58) (1.02)
Adjusted R2 0.26 −0.04 0.00 −0.01 0.01 0.03 −0.03 0.14 0.03 −0.03 0.52

Notes. Each column reports the results of a separate regression involving the 30 observations in the matched data set. A coefficient of +1 implies
a 1%-point increase in the likelihood of a future bubble. willBeBubble is the indicator for the 15 prebubble cases. Each prebubble case is
matched to the most similar industry-month observation without a subsequent bubble based on retPast2Yr (percentage), netPast2Yr
(percentage), retPast5Yr (percentage), bookToMkt, and volatility (percentage per year) as of the start date of the bubble. theta
(percentage) is the sensitivity of speculator persuasiveness to increases in past returns. turnoveri,t (percentage per month) is the value-
weighted trading volume divided by shares outstanding in month t. agei,t (years) is the value-weighted firm age in month t. ageTilti,t
(percentage) is the difference between equal-weighted and age-weighted returns over the past two years. newIssuancei,t (percentage) is the
percentage of firms issuing equity in the past two years. Δsalesi,t (percentage per year) is the value-weighted year-over-year sales growth.
CAPEt is the market-wide cyclically adjusted P/E ratio in month t. retAcceli,t (percentage) is the value-weighted return in months [t− 23, t]
minus return in months [t− 23, t− 12]. WSJcoveragei,t (percentage) is the average percentage of WSJ articles in the past two years about an
industry. ΔWSJcoveragei,t (percentage per year) is the year-over-year change in average percentage ofWSJ articles about an industry. Intercept
estimates are not reported for clarity. I divide each predictor by the difference between its average in the prebubble cases and the matched
controls (e.g., the estimated 17.20 in column (8) is the β̂ from the regression willBeBubblei,t � α̂ + β̂ · (retAcceli,t=18:01) + ε̂ i,t). Column (5) of
Table 2 reports the average case-control difference for each predictor. Numbers in parentheses are t statistics clustered by industry.

*Statistical significance at the 10% level; **statistical significance at the 5% level; ***statistical significance at the 1% level.
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in columns (2)–(10). Column (11) shows that the pre-
dictive power of theta is unchanged when including
these other variables.

In addition, column (11) in Table 5b also highlights
how theta is not just a proxy for overall media cov-
erage. Including WSJcoverage and ΔWSJcoverage
does not erode the coefficient on theta. An industry
must receive some media coverage to have theta
> 0. There is no way for Pr[isPosArticlei,d |
retWentUpi,d−1] > 0 if there are no articles about the
ith industry, positive or otherwise. However, lots of
media coverage on its own do not mechanically
imply a high theta. For example, much of the WSJ
coverage of semiconductor stocks in recent years has
focused on privacy concerns involving products with
microchips in them. Articles often do not mention
chip makers’ recent stock market gains or losses. So,
although the semiconductor industry has gotten a lot
of coverage lately, its theta is still low.

4. Supporting Results
This section provides three sets of supporting results
that complement my main empirical analysis. I start
in Section 4.1 by comparing and contrasting this paper
with GSY. My definition of a speculative bubble is
based on GSY. Yet, many of the variables that predict
crashes in GSY do not predict future bubbles in this
paper. Each paper is answering a different question
about bubbles, and this accounts for the difference in
our empirical results.

In Section 4.2, I include all industry-month observa-
tions that are sufficiently similar to some past bubble
episode in my regression analysis. This amounts to
making rolling out-of-sample predictions about whether
the next frothy industry-month observation will bubble
over, which mirrors the real-world applications that
econometricians and policymakers care about most.

Last but not least, in Section 4.3, I show that the
results in Section 3 are robust to some ex post disagree-
ment about how to define a bubble. If you strongly
believe that 1 of the 15 bubble episodes used in the anal-
ysis is not a bubble, then feel free to leave it out. The
findings in Table 5a will be qualitatively unchanged.

4.1. Bubbles for Fama
I define a bubble as a local price maximum with a spec-
ulative boom during the run-up (retPast2Yr
> 100%, netPast2Yr > 100%, and retPast5Yr > 50%)
and a crash following the peak (< −40% decline). Yet,
although my boom and bust definitions come from
GSY, many variables that predict crashes in GSY do not
predict the likelihood of a future bubble in this paper.

The main reason for the difference in our results is
the difference in our research questions. GSY asks if
any variables other than past returns predict whether
an already booming industry will suffer an immediate

crash. By contrast, I ask if θ predicts whether a not yet
booming industry will suffer a future bubble nomatter
when the peak occurs. This difference in questions has
three important consequences.

First, although we both use the same boom and
crash definitions, each paper has a different bubble
definition. Because GSY is interested in predicting the
timing of the crash, the authors only consider a subset
of bubble episodes—namely, those involving a single
boom month followed by an immediate crash. Bub-
bles with multiple booms or a single boom followed
by a delayed crash are not considered bubbles in GSY.
The list of booms without a crash in Greenwood et al.
(2019, table 1b) contains several such episodes, like
the mid-2000s bubble in the mining industry.

Second, although GSY does not use this language, it
is also using a case-control methodology. Greenwood
et al. (2019, table 1a) presents cases of interest (i.e.,
bubbles), and Greenwood et al. (2019, table 1b) lists a
set of matched control observations (i.e., nonbubbles).
Yet, although both papers are case-control studies, we
each select our control observations in different ways.

GSY wants to show that “there is much more to a bub-
ble than a mere security price increase” (Greenwood et al.
2019, p. 3). So they populate their table 1b in Greenwood
et al. (2019) with observations that have similar past
returns to their bubble episodes in table 1a in Greenwood
et al. (2019). Then they document that other variables,
such as new issuance, predict which table an observation
was drawn from.

I want to show that differences in θ predict which of
two otherwise identical industries will experience a
future bubble. So, having learned from GSY that there is
more to bubbles than high returns, I look for more than
just high returns when choosing control observations for
Table 1b. I alsomatch on book-to-market and volatility.

Third, GSY wants to predict whether an already
booming industry will immediately crash, whereas I
want to predict whether a not-yet-booming industry
will bubble over at all. So GSY studies each bubble
after it has already started, whereas I study each bub-
ble before it starts.

Section B.2 in the online appendix shows how to
modify my empirical exercise to match GSY’s approach.
Table B2 in the online appendix shows that if I extend
my sample period, exclude bubbles where the first
boom month is not immediately followed by a crash,
choose control observations based only on past returns,
and study the first boom date rather than the start date,
then I can match GSY’s findings.

The control observations in Table 1b are different
from the ones listed in Greenwood et al. (2019, table
1b). But in Figure B2 in the online appendix, I show
that if I were to match bubble episodes, I would select
the same control observations as in Greenwood et al.
(2019, table 1b).
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In short, there is no fundamental conflict between our
results. It is possible to bring GSY’s results in line mine
by making the three changes above. However, if I were
to do this, I would no longer be testing whether differen-
ces in θ predict the likelihood of a future bubble among
otherwise identical industry-month observations.

4.2. Out-of-Sample Predictions
Table 5a shows that theta predicts the likelihood of a
future bubble in a data set containing 15 prebubble
cases and 15 otherwise similar controls. This evidence
confirms the key prediction of the economic model in
Section 2. Yet, there are two reasons why it does not
directly speak to econometricians’ and policymakers’
core question. Given everything else we know about
an industry, how likely is it that a modest price
increase today will morph into a speculative bubble in
the future?

The first is about feasibility. My main empirical analy-
sis pairs each bubble episode with a single control obser-
vation. I do this using data observed as of the start of
each bubble episode, which is defined as the most recent
month where the bubble industry had retPast2Yri,t
< 50%. But how are econometricians and supposed to
know in real time if they are looking at the start of one
of the bubbles in Table 1a?

The second is more quantitative. There are many
industry-month observations that look similar to each
prebubble case. Table 5a shows that theta predicts
the ex ante likelihood of bubbles in a data set contain-
ing one match per bubble. But maybe its forecasting
power deteriorates when looking at many matches
per bubble episode?

I address both these concerns in Table 6 by using
theta to make rolling out-of-sample predictions. The
data in this table include all industry-months that are
similar to the start of some previous bubble. In each
month t, I include any industry with a match distance
less than 0.88 (i.e., the maximum match distance in
Table 1b) to the start date of a bubble that crashed
prior to month t.

The resulting data set contains 187 industry-month
observations. These 187 observations include the start
dates for 11 of the 15 bubble episodes listed in Table
1a. This finding demonstrates that it is possible to rec-
ognize start dates in real time.

Each column in Table 6 reports a separate logit spec-
ification. I switch to a logit model because 11=187 �
5:9% is close enough to zero that willBeBubble
should be treated as a binary response. Column (1)
reveals that each 1%-point increase in theta is associ-
ated with a 7.86% larger bubble likelihood. theta
averages 10.1% in the 11 prebubble cases, whereas it
only averages 6.3% in the remaining 176 observations.
This 10:1%− 6:3% � 3:8%-point difference in theta

predicts a 3:8% × 7:86 ≈ 30% larger ex ante bubble
likelihood. theta is a quantitatively useful predictor
even when the probability of a future bubble is much
less than 50%.

Columns (2) and (3) in Table 6 confirm that theta’s
out-of-sample forecasting power is not driven by the
previously examined covariates. Column (4) shows
there is nothing different about theta’s predictions

Table 6. Out-of-Sample Predictions

Dependent variable: willBeBubble (1) (2) (3) (4)
theta 7.86** 12.88** 7.35**

(1.96) (2.18) (2.02)
turnover 0.36 0.23

(1.27) (0.71)
age −7.60** −6.95**

(2.20) (2.21)
ageTilt 1.03 −0.28

(0.70) (0.17)
newIssuance 2.54 2.45

(0.92) (0.87)
Δsales 0.57 0.41

(1.07) (0.81)
CAPE −0.69 −0.82

(0.54) (0.61)
retAccel 1.30 1.29

(0.74) (0.60)
WSJcoverage −4.73 −7.81

(0.41) (1.27)
ΔWSJcoverage 5.32 4.66

(0.25) (0.17)
No. of observations 187 187 187 191
No. of bubbles 11 11 11 15

Notes. Each column reports the results of a separate logistic
regression. A coefficient of +1 indicates a 1% proportional increase in
the likelihood of a future bubble. Intercept estimates are not reported
for clarity. Each industry-month observations in columns (1)–(3) had
a match distance of <0.88 to some previous bubble episode based on
retPast2Yr (percentage), netPast2Yr (percentage), retPast5Yr
(percentage), bookToMkt, and volatility (percentage per year) as
of the start date of the episode. Eleven of the 15 episodes in Table 1a
were sufficiently similar to some past bubble episode; the remaining
four were dissimilar to every previous episode. Column (4) reestimates
column (1) including these four episodes. willBeBubble (true/false)
is the indicator for whether an observation was followed by a bubble.
theta (percentage) is the sensitivity of speculator persuasiveness
to increases in past returns. turnoveri,t (percentage per month) is
the value-weighted trading volume divided by shares outstanding
in month t. agei,t (years) is the value-weighted firm age in month t.
ageTilti,t (percentage) is the difference between equal-weighted
and age-weighted returns over the past two years. newIssuancei,t
(percentage) is the percentage of firms issuing equity in the past
two years. Δsalesi,t (percentage per year) is the value-weighted
year-over-year sales growth. CAPEt is the market-wide cyclically
adjusted P/E ratio in month t. retAcceli,t (percentage) is the
value-weighted return in months [t− 23, t] minus return in months
[t− 23, t− 12]. WSJcoveragei,t (percentage) is the average percentage
of WSJ articles about an industry each month during the past two
years. ΔWSJcoveragei,t (percentage per year) is the year-over-year
change in average percentage of WSJ articles about an industry each
month. Numbers in parentheses are t statistics clustered by industry.

**Statistical significance at the 5% level.

Chinco: The Ex Ante Likelihood of Bubbles
Management Science, Articles in Advance, pp. 1–23, © 2022 INFORMS 19



in the four episodes—Oil (July 1979), Computer Hard-
ware (March 1995), Laboratory Equipment (Novem-
ber 1999), and Steel (May 2000)—with start dates not
included in the original 187.

4.3. Ex Post Disagreement
Suppose you believe that 1 of the 15 bubble episodes

in my data set is not a bubble. There are 15
1

( )
� 15 dif-

ferent ways to remove one episode. No matter which
episode we disagree about, the omission will not
affect the 4.55-point estimate for the slope coefficient
on theta. The average slope coefficient across the 15
different ways to omit k � 1 episode is 4:576(0:31) in
Table 7.

Walking down the rows in Table 7, we see that we
would have to disagree on at least four episodes
before seeing a single insignificant result. Still, 1,360 of

the 15
4

( )
� 1, 365 ways to omit four bubble episodes still

yield statistically significant results.
Even if we removed a full third of the 15 bubble epi-

sodes in my main analysis, we would only see insig-

nificant results 1.9% of the time. Only 58 of the 15
5

( )
�

3, 003 ways to omit five episodes would result in a
statistically insignificant coefficient on theta. Not a
single one of the 3,003 combinations would flip the
sign, Min[coef ] � 2:79 > 0.

These results do not imply that the definition of a
“speculative bubble” is irrelevant. Definitions matter. If
everyone agreed on how to define a speculative bub-
ble, researchers would be able to study this phenom-
enon much more precisely. But we do not have to
wait for a consensus definition before studying this
phenomenon at all. We can test predictions about
what makes a bubble more or less likely in the future

even when there remains some disagreement about
how to define one after the fact.

5. Conclusion
This paper aims to expand the set of questions that
economists ask about speculative bubbles. Suppose
there has recently been some good news about an asset.
And as a result, its price has increased a bit. How likely
is it that this modest price increase will morph into a
full-blown speculative bubble? This is a question about
the likelihood of a future bubble, not about how the
bubble will be sustained in equilibrium.

To answer a question about the likelihood of a
future bubble, you need a theory not of the limits to
arbitrage but of the force that sporadically causes
these limits to bind. This paper proposes the first such
theory. The on/off switch is based on the idea that
speculators “go mad in herds [but] only recover their
senses slowly and one by one” (Mackay 1841). The
theory predicts that speculative bubbles should be
more likely to occur in assets where increases in past
returns make excited-speculators much more persua-
siveness to their peers.

The theory gives the first way to forecast the likeli-
hood of a future bubble episode based on information
observed during normal times when no bubble is
currently taking place. I empirically validate this pre-
diction with a case-control study using data on
industry-level stock returns. In the process, I demon-
strate that it is possible to test such ex ante predictions
about bubble likelihoods even in the presence of some
ex post disagreement about bubble definitions.
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was <0.05 when using standard errors clustered by industry.
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Appendix. Technical Appendix

Proof of Proposition 1. Newswatchers have demand
given by xj,t � (sj,t − pt)=γ. Market clearing implies that

ψ �
∫ 1

0
xj,t ·dj+ (λ · rt−1) × nt. Because newswatcher signals

are correct on average, E[sj,t] � vt, we can conclude that

ψ � (vt − pt)=γ+ (λ · rt−1) × nt:

Rearranging to isolate pt on the left-hand side gives the
desired result. w

Proof of Proposition 2. Suppose the excited-speculator
population obeys the law of motion dn

dt �G(n, θ, r) � θ · r·
(1− n) × n− n. We can rewrite this as

G(n, θ, r) � (θ · r− 1) × n−θ · r × n2:

There are then two possibilities to consider.
A. If r < 1=θ, then (θ · r− 1) < 0. So, the only way for the

right-hand side of the equation to equal zero when r < 1=θ is
for n � 0. Thus, when r < 1=θ, SS(θ, r) � {0}. This unique
steady state is stable because

∂n[G(n, θ, r)]n�0, r<1=θ � θ · (r− 1=θ) − 2 ·θ · r · 0 < 0:

B. If r > 1=θ, then (θ · r− 1) > 0. So, there are now two ways
for the right-hand size of the equation to equal zero: n � 0 and
n � (r− 1=θ)=r. Thus, when r > 1=θ, SS(θ, r) � {0, (r− 1=θ)=r}.
And only the strictly positive steady state is stable because

∂n[G(n, θ, r)]n�0, r>1=θ � θ · (r− 1=θ) − 2 ·θ · r × 0 > 0

∂n[G(n, θ, r)]n�(r−1=θ)=r, r>1=θ � θ · (r− 1=θ) − 2 ·θ · r × (r− 1=θ)=r < 0:
w

Proof of Proposition 3. The probability of realizing a
speculative bubble at time (t+ 1) given that rt−1 < r? can
be written as

Et−1[B(θ, rt) | B(θ, rt−1) � 0] � Prt−1[rt > r? | rt−1 < r?]:
Given the stochastic process governing asset payouts, we
know that

Et−1[Δvt] � κv · (μv − vt−1)
Vart−1[Δvt] � σ2v:

Thus, given knowledge of vt−1, pt−1 and rt−1 < r?, we can
write the probability density function (PDF) for the price
of the risky asset at time t as

pdft−1(p) �
1

σv ·
������
2 ·π√ · e−

1
2·σ2v

·(p−vt−1−Et−1[Δvt]+γ·ψ)2
: (A.1)

This PDF can be used to write down an integral expres-
sion for the probability of a speculative bubble at time (t+
1) because rt �defpt=pt−1:

Et−1[B(θ, rt) | rt−1 < r?] �
∫ ∞

pt−1=θ
pdft−1(p) ·dp: (A.2)

Notice two facts about this integral. Fact 1 is that pdft−1(p)
is a strictly positive function. Fact 2 is that θ plays no part
in pdft−1(p) itself; it only enters into Equation (A.2) as a
boundary condition. Thus, increasing θ simply increases
the size of the interval over which a strictly positive func-
tion is being integrated. So, Et−1[B(θ, rt) | rt−1 < r?] must be
strictly increasing in θ. w

Proof of Corollary 1. This corollary follows from the fact
that excited-speculators’ beliefs only affect equilibrium
prices during a speculative bubble when nt > 0. However,
the likelihood of entering into a speculative bubble is
based on considerations made prior to the bubble when nt
� 0. Thus, λ does not show up in either the PDF in Equa-
tion (A.1) or the boundary conditions in Equation (A.2). w

Endnotes
1 See “Fed Set to Cut Rates for First Time in Decade. Is It a Risk?” at
https://apnews.com/article/economy-donald-trump-us-news-ap-
top-news-jerome-powell-dad5b590357d4380a1eb28720fc20774 (AP
News, July 29, 2019).
2 See “Greenspan Is Concerned About ‘Froth’ in Housing” at
https://www.nytimes.com/2005/05/21/business/greenspan-is-concerned-
about-froth-in-housing.html#:~:text=Greenspan%20emphasized%20that
%20he%20sees,local%20bubbles%22%20around%20the%20country (The
New York Times, May 21, 2005).
3 Of course, the limits-to-arbitrage literature also tells us that differ-
ent bias-constraint pairs will result in speculative bubbles that
unfold in different ways. They will have booms of different sizes,
peaks at different times, and crashes of different severities. Thus,
because my bubble-generating mechanism must be agnostic about
the bias-constraint pair responsible for a bubble, it will only speak
to the likelihood of a future bubble. It will remain silent about how
the resulting bubbles will unfold.
4 See “Gun Deaths in America” at https://fivethirtyeight.com/
features/gun-deaths/ (FiveThirtyEight, June 6, 2016).
5 I could model newswatchers who were short-sale constrained
rather than myopic. In such a model, the option to sell at an inflated
price during future bubble episodes would push up an asset’s price
today as in Scheinkman and Xiong (2003). If our goal was to under-
stand cross-sectional differences in average price levels, this would
be exactly the right model. But this is not our goal. We want to pre-
dict cross-sectional differences in the likelihood of a future bubble.
6 The choice of 1 × n rather than ω × n for ω > 0 is without loss of
generality (see Section A.1 in the online appendix). The key
assumption is that the rate at which excited-speculators calm down
must be less sensitive to changes in the size of the excited-specula-
tor crowd, n, and the asset’s past returns, r, than the rate at which
apathetic speculators get excited. The functional forms in Equations
(9) and (10) are the simplest way to model this assumption. It is also
possible to incorporate stochastic fluctuations in these population
dynamics (see Section A.2 in the online appendix).
7 Standard texts (e.g., Arnol’d 2012) show that nτ(n0, θ, r) is unique
for all τ ≥ 0 and n0 ∈ [0, 1) because θ · r · (1− n) · n− n is continu-
ously differentiable on an open interval containing [0, 1).
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8 More formally, we say that n̄ ∈ SS(θ, r) is stable if for every δ > 0,
there is some ε > 0 such that |nτ(n0, θ, r) − n̄| < δ for all τ ≥ 0 given
any initial population n0 ∈ (n̄ − ε, n̄ + ε).
9 It is also not essential that θ be strictly constant over time. All that
matters is that θ varies on a much slower timescale than returns.
And I verify that this is true empirically in Section 3.3.
10 See “China Blowing Major Bubbles in 2017” at https://www.
forbes.com/sites/kenrapoza/2016/12/19/china-bubble-economy-
2017/?sh=61bdec704745 (Forbes, December 19, 2016).
11 Industries are labeled as in Fama and French (1997): (1) Aero: air-
craft; (2) Agric: agriculture; (3) Autos: automobiles and trucks; (4)
Banks: banking; (5) Beer: beer and liquor; (6) BldMt: construction
materials; (7) Books: printing and publishing; (8) Boxes: shipping
containers; (9) BusSv: business services; (10) Chems: chemicals; (11)
Chips: electronic equipment; (12) Clths: apparel; (13) Cnstr: con-
struction; (14) Coal: coal; (15) Drugs: pharmaceutical products; (16)
ElcEq: electrical equipment; (17) FabPr: fabricated products; (18)
Fin: trading; (19) Food: food products; (20) Fun: entertainment; (21)
Gold: precious metals; (22) Guns: defense; (23) Hardw: computers;
(24) Hlth: healthcare; (25) Hshld: consumer goods; (26) Insur: insur-
ance; (27) LabEq: measuring and control equipment; (28) Mach:
machinery; (29) Meals: restaurants, hotels, and motels; (30) MedEq:
medical equipment; (31) Mines: nonmetallic and industrial metal
mining; (32) Oil: petroleum and natural gas; (33) Paper: business
supplies; (34) PerSv: personal services; (35) RlEst: real estate; (36)
Rtail: retail; (37) Rubbr: rubber and plastic products; (38) Ships:
shipbuilding and railroad equipment; (39) Smoke: tobacco prod-
ucts; (40) Soda: candy and soda; (41) Softw: computer software; (42)
Steel: steel works; (43) Telcm: communications; (44) Toys: recrea-
tion; (45) Trans: transportation; (46) Txtls: textiles; (47) Util: utilities;
(48) Whlsl: wholesale.
12 Section B.1 in the online appendix shows that the paper’s main
results are robust to defining a speculative bubble using return
thresholds other than 100% and –40%.
13 See http://www.econ.yale.edu/˜shiller/data.htm to download
these data.
14 Manela (2014) also uses media coverage to proxy for information
diffusion after Food and Drug Administration drug approval.
15 https://sraf.nd.edu/loughranmcdonald-master-dictionary/.
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