1. Introduction
The “law of small numbers” is the name given to the well documented empirical regularity that people tend to overinfer from small samples in Tversky and Kahneman (1971). This post discusses a few of the results from Rabin (2002) which applies the law of small numbers to the beliefs of stock market traders. This paper is particularly nice because it captures this behavioral bias and its many interesting implications using only a small tweak to a simple Bayesian learning problem.
This post contains two parts: First, in Section , I characterize the biased beliefs of a trader who is suffering from the law of small numbers. For brevity, I refer to this traders as Bob in the text below. Then, in Section
, I show how returns in a market populated by Bobs would display excess volatility.
2. The Core Idea
First, I define our hero’s problem. Suppose that Bob watches a sequence of signals for
. The signal Bob sees
each period is an iid draw from a binomial distribution with intensity,
:
(1)
There are a finite number of possible ‘s and Bob doesn’t know which
governs the stream of signals he observes. Let
denote the set of all rates that could occur with positive probability,
, so that
. Bob’s challenge is to infer which
is governing the string of signals he is observing.
Next, I define Bob’s inference strategy in light of his bias due to the law of small numbers. Suppose that he has correct beliefs about the distribution of ‘s and is fully Bayesian; however, he believes that there is some positive integer
such that signals are drawn without replacement from an urn containing
signals of
and
signals of
. Finally, so that the game does not end after
periods, Bob thinks that this urn is refilled every two draws. Thus, while odd and even draws are correlated, pairs of draws are iid.
In order for this inference strategy to be well defined, it has to be the case that Bob believes there is some such that there are at least two
and
signals that can be drawn at each point in time. Thus, there exists
such that:
(2)
implying that . Let
represents Bob’s posterior beliefs about the probability of each
governing his string of signals after a history of signals
given that he is a type-
sufferer of the law of small numbers. As a clarifying example, note that
beliefs represent the beliefs of a fully rational agent. In the text below, I will can this fully rational agent Alice for concreteness.
With his problem and inference strategy in place, I now prove two results characterizing Bob’s beliefs. I first compute Bob’s beliefs immediately after seeing either or
for a signal
on an odd period:
Proposition: For all
,
and
:
(3)
so that both
and
are increasing in
.
Proof: The expressions for
and
follow immediately from Bayes’ rule as, for example:
(4)
The fact that
is increasing in
follows from a Markov clever rewriting:
(5)
follows from the fact that Bob believes the signals are drawn from an urn
signals deep without replacement where one signal has already been removed. Since
is independent of
and
is increasing in
then
is increasing in
. The result for
follows from symmetry.
There are two interesting features of this result. First, note that Bob’s beliefs are identical to an agent with proper Bayesian beliefs in the first period. Second, because he believes that the signals are draw from an urn without replacement, Bob underestimates drawing two ‘s in a row or two
‘s in a row in a manner that decreases in the size of the urn.
Next, I characterize Bob’s posterior beliefs about two different ‘s given an extreme set of signals:
Proposition: Let
be a history of
signals and let
be a history of
signals. For all
and
such that
, both
and
are strictly decreasing in
.
Proof: For even
, note that:
(6)
Thus, this ratio is decreasing if and only if
. Extending the argument to odd values of
only changes the counting convention and symmetry yields the same result for
.
This proposition implies that, following an extreme sequence of signals, Bob overinfers that he is facing an extreme rate. Intuitively, if Bob thinks that the signals are drawn from an urn without replacement, then he is too surprised when he sees extreme signals because once a signal of has been drawn in an odd period he believes that same signal cannot be drawn again in the following even period.
3. Excess Volatility
I now apply this reasoning to the behavior of returns in a market populated by Bobs. First, I describe the assets. Consider a market with countably infinitely many stocks indexed by . Each month, every stock realizes either a positive or negative return denoted by
for positive returns or
for negative returns which is drawn iid from a binomial distribution with parameter
. Thus, in this market, positive returns for stock
today do not in fact predict positive returns tomorrow or vice versa. Suppose that a fraction
of the stocks have
, a fraction
of the stocks have
and the remaining fraction
of the stocks have
.
Next, I describe the trading strategy of the Bobs which I index with . Let
denote the list of stocks not chosen by Bob
from month
up to but not including month
. Each Bob then adheres to the following trading strategy:
- At month
, Bob
picks one stock
at random and holds onto one share for the next four months,
.
- Then, in month
, Bob
sells this share and picks a new stock at random at random from
. He buys a shares and holds onto it for the next four months,
.
- Then, in month
, Bob
sells this share and picks a new stock at random at random from
. He buys a shares and holds onto it for the next four months,
.
- And so on
Thus, via the law of large numbers, each stock will have the same number of Bobs holding is at each point in time with exactly of the Bobs exchanging the stock for another each period.
I now consider the average beliefs of traders in a market populated by Bobs who suffer from the law of large numbers. First, I compute the probability that Bayesian traders and traders suffering from the law of small numbers believe that stock ‘s return parameter is
after observing different strings of returns in the left two columns of the table below. Then, I compute the probability that these two types of traders beliefs that the next return will be
given these previous return realizations in the right two columns of the same table.
Consistent with the second proposition in Section above, note that the Bobs overestimate the probability that an asset’s returns are generated by the parameter
following a string of positive returns. Next, in the table below, I conclude by computing the average belief about the probability that
among both Bayesian traders (i.e., Alices) and traders suffering from the law of small numbers (i.e., Bobs) computed over the four groups of traders who have seen no signals, one signal, two signals and three signals for asset
respectively. Again, this table reveals that for extremely positive return histories, the Bobs overinfer the probability of
and thus
; however, for more balanced histories the Bobs underestimate the probability that
relative to the Bayesian Alices.
Thus, if all traders were Bobs, they would overreact to strings of positive returns and generate excess volatility.